Skip to main content
Log in

Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): a review

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Arabica coffees (60 % of current world coffee production) are generally sold at considerably better prices than robustas on account of superior beverage quality. However, costs of production are much higher, mainly due to more stringent demands for soil and climatic conditions, crop management, primary processing and control of several pests and diseases including the potentially very destructive coffee leaf rust (CLR) and berry disease (CBD). Breeding for disease resistance in combination with vigour, productivity and quality started in the early 1920s in India, but especially in the second half of the 20th century comprehensive breeding programmes have been implemented in several other coffee producing countries. Many of the resulting CLR- and CBD + CLR-resistant cultivars (true-breeding lines and F1 hybrids) meet the required standards of profitable and sustainable crop production. Challenges of more recent date include limited access to additional genetic resources of Coffea arabica, breakdown of host resistance to CLR, aggravating insect pest problems and the increasingly negative impact of climate change on arabica coffee production worldwide. This review discusses prospects of breeding and disseminating next generation (hybrid) cultivars of arabica coffee for sustainable coffee production under changing conditions of diseases, pests and climate. International networking on coffee breeding will facilitate sharing of resources (financial, genetic) and scientific information, application of genomics-assisted selection technologies, and pre-breeding for specific characters. Breeding and multiplication of new cultivars well adapted to the local environment will continue to be carried out at national or regional levels. A tree crop like arabica coffee does not lend itself to centralized variety development and dissemination on a global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BCRI-E:

Biodiversity Conservation and Research Institute, Ethiopia

CATIE:

Centro Agronómico Tropical de Investigacion y Enseñanza, Costa Rica

CCRI:

Central Coffee Research Institute, India

CENICAFE:

Centro Nacional de Investigaciones de Café, Colombia

CIFC:

Centro d’Investigaçao das Ferrugens do Cafeeiro, Portugal

CIRAD:

Centre de Coopération Internationale en Recherche Agronomique pour le Développement, France

CRF:

Coffee Research Foundation, Kenya

FAO:

Food and Agriculture Organization of the United Nations

FNC:

Federation National de Cafeteros, Colombia

IAC:

Instituto Agronômico de Campinas, SP Brasil

IAPAR:

Instituto Agronômico do Paraná, Brasil

IAR/JARC:

Institute of Agricultural Research/Jimma Agricultural Research Centre, Ethiopia

ICCRI:

Indonesian Coffee and Cocoa Research Institute

ICGN:

International Coffee Genome Network

ICO:

International Coffee Organization, London, UK

IICT:

Insttituto de Inveastigaçao Cientifica Tropical, Portugal

IRD:

Institut de Recherche pour le Développement (ex ORSTOM), France

ORSTOM:

Office de la Recherche Scientifique Outre-Mer

PROMECAFE:

Programa cooperativo regional para el desarollo technologico y Modernization de la Caficultura, Centro America

TaCRI:

Tanzania Coffee Research Institute

UFV:

Universidade Federal de Viçosa, MG Brasil

WCR:

World Coffee Research, USA

References

  • Andrade AC (2015) Coffee is not an orphan genomics crop (we did it!): time to translate genomic tools into fast breeding. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–12 Sep 2014 (in press)

  • Anzueto F, Bertrand B, Sarah JL, Eskes AB, Decazy B (2001) Resistance to Meloidogyne incognita in Ethiopian Coffea arabica origins: detection and study of resistance transmission. Euphytica 118:1–8

    Article  Google Scholar 

  • Avelino J, Barboza B, Araya JC, Fonseca C, Davrieux F, Guyot B, Cilas C (2005) Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs in Costa Rica, Orosi and Santa Maria de Dota. J Sci Food Agric 85:1869–1876

    Article  CAS  Google Scholar 

  • Bellachew B (1997) Arabica coffee breeding in Ethiopia: a review. Proceedings of the 17th ASIC international conference on coffee science, Nairobi, Kenya, pp 406–414

  • Bellachew B, Sacko JC (2009) Coffee genetic resources under severe threat from genetic erosion in the centres of origin and diversity: an urgent need for conservation measures. Proceedings of the 22nd ASIC international conference on coffee science, Campinas, SP, Brazil, 14–19 Sep 2008, pp 1487–1496

  • Bertrand, B, Aguilar G, Santacreo R, Anthony F, Etienne H, Eskes AB, Charrier A (1997) Comportement d’hybrides F1 de Coffea arabica pour la vigeur, la production et la fertilité en Amérique Centrale. Proceedings of the 17th ASIC international conference on coffee science, Nairobi, Kenya, pp 415–423

  • Bertrand B, Cilas C, Hervé G, Anthony F, Etienne H, Villain L (1998) Relations entre les populations des nématodes Meloidogyne exigua et Pratylenchus sp. dans les racines de Coffea arabica au Costa Rica. Plant Rech Dévelop 5:279–284

    Google Scholar 

  • Bertrand B, Aguilar G, Santacreo R, Anzueto F (1999) El mejoramiento genético en América Central. In: Bertrand B, Rapidel B (eds) Desafio de la caficultura centroamericana. IICA, San José, pp 407–456

    Google Scholar 

  • Bertrand B, Vaast Ph, Alpizar E, Etienne H, Davrieux F, Charmetant P (2006) Comparison of bean biochemical composition and beverage quality of arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiol 26:1239–1248

    Article  CAS  PubMed  Google Scholar 

  • Bertrand B, Alpizar E, Llara L, SantaCreo R, Hidalgo M, Quijano JM, Charmetant P, Montagnon C, Georget F, Etienne H (2011) Performance of Coffea arabica F1 hybrids in agroforestry and full-sun cropping systems in comparison with American pure line varieties. Euphytica 181(2):147–158

    Article  Google Scholar 

  • Bertrand B, Montagnon C, Georget F, Charmetant P, Etienne H (2012a) Création et diffusion de variétés de caféiers Arabica: quelles innovations variétales? Cah Agric 21:77–88

    Google Scholar 

  • Bertrand B, Boulanger R, Dussert S, Ribeyre F, Berthiot L, Descroix F, Joét T (2012b) Climatic factors directly impact the volatile organic compound fingerprint in green arabica coffee bean as well as coffee beverage quality. Food Chem 135(4):2575–2583

    Article  CAS  PubMed  Google Scholar 

  • Brando CHJ (2014) Drought and damage to coffee production in Brazil. P&A Coffee Newsletter Coffidential 8(85)

  • Carvalho A (1988) Principles and practice of coffee plant breeding for productivity and quality factors: Coffea arabica. In: Clarke RJ, Macrae R (eds) Coffee. Agronomy, vol 4. Elsevier Applied Science, London and New York, pp 129–165

    Google Scholar 

  • Carvalho A, Ferwerda FP, Frahm-Lelieveld JA, Medina DM, Mendes AJT, Monaco LC (1969) Coffee. In: Ferwerda FP, Wit F (eds). Outlines of perennial crop breeding in the tropics. Miscellaneous Papers No. 4. Agricultural University, Wageningen, pp 189–241

  • Charrier A (1978) Etude de la structure et de la variabilité des caféiers: Coffea arabica. Bulletin no. 14, IFCC-ORSTOM, Paris, France

  • Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cristancho MA, Rozo Y, Escobar C, Rivillas CA, Gaitán AL (2012) Outbreak of coffee leaf rust (Hemileia vastatrix) in Colombia. New Dis Rep 25:19

    Article  Google Scholar 

  • DaMatta FM (2004) Exploring drought tolerance in coffee: a physiological approach with some insights for plant breeding. Braz J Plant Physiol 16:1–6

    Article  Google Scholar 

  • DaMatta FM (2006) Impacts of drought and temperature stress on coffee physiology and production: a review. Braz J Plant Physiol 18:55–81

    Article  CAS  Google Scholar 

  • Davis AP, Gole TW, Baena S, Moat J (2012) The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLOS One 7(11): e47981

  • Decazy F, Avelino J, Guyot B, Perriot JJ, Pineda C, Cilas C (2003) Quality of different Honduran coffees in relation to several environments. J Food Sci 68:2356–2361

    Article  CAS  Google Scholar 

  • Denoeud F et al (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181–1184

    Article  CAS  PubMed  Google Scholar 

  • Dulloo DE, Charrier A, Dussert S, Anthony F, Tesfaye S, Rakotomalala JJ, Agwanda C, Legnaté N (2001) Conservation of coffee genetic resources: constraints and opportunities. Proceedings of the 19th ASIC international conference on coffee science, Trieste, Italy, 14–18 May 2001

  • Egonyu JP, Kucel P, Kangire A, Sewaya F, Nkugwa C (2009) Impact of the black twig borer on Robusta coffee in Mukono and Kayunga districts, central Uganda. J Anim Plant Sci 3:163–169

    Google Scholar 

  • Engelmann F, Dulloo ME, Astorga C, Dussert S, Anthony F (2007) Conserving coffee genetic resources: complementary strategies for ex situ conservation of coffee (Coffea arabica L.) genetic resources. A case study in CATIE, Costa Rica. Bioversity International, Rome, Italy

  • Etienne H, Bertrand B, Montagnon C, Landey RB, Dechamp E, Jourdan I, Alpizar E, Malo E, Georget F (2012) Un exemple de transfert de technologie réussi dans le domaine de la micropropagation: la multiplication de Coffea arabica par embryogenese somatique. Cah Agric 21(2–3):115–124

    Google Scholar 

  • FAO (2012) Statistical Yearbook 2012. http://www.fao.org

  • Fernandez D, Tisserant E, Talhinas P, Azinheira H, Vieira A, Petitot AS, Loureiro A, Poulain J, Da Silva C, Silva MC, Duplessis S (2012) 454-Pyrosequencing of Coffea arabica leaves infected by the rust fungus Hemileia vastatrix rerveals in-planta expressed pathogen-secreted proteins and plant functions in a late compatible plant-rust interaction. Mol Plant Pathol 13(1):17–37

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo A, Loureiro A, Batista D, Monteiro F, Várzea V, Pais MS, Gichuru EK, Silva MC (2013) Validation of reference genes for normalization of qPCR gene expression data from Coffea spp. hypocotyls inoculated with Colletotrichum kahawae. BMC Research Notes 6: 388

  • Fridell G (2014) Coffee. Polity Press, Cambridge

    Google Scholar 

  • Gast F (2014) CENICAFE's sustainability strategy of Café de Colombia. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8 Sep 2014. http://www.federaciondecafeteros.org

  • Georget F, Alpizar E, Courtel P, Hidalgo JM, Dechamp E, Poncon C, Etienne H, Bertrand B (2015a) Arabica F1 hybrid seed production based on genetic male sterility. Proceedings if the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–12 Sep 2014 (in press)

  • Georget F, Courtel P, Malo Garcia E, Alpizar E, Hidalgo JM, Dechamp E, Poncon C, Bertand B, Etienne H (2015b) A potential alternative for commercial propagation of C. arabica F1 hybrids: somatic embryo-derived nursery plantlets can be propagated via rooted cuttings. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–12 Sep 2014 (in press)

  • Gichimu BM, Gichuru EK, Mamati GE, Nyende AB (2014) Occurrence of Ck-1 gene conferring resistance to coffee berry disease in Coffea arabica cv. Ruiru 11 and its parental genotypes. J Agric Crop Res 2(3):51–61

    Google Scholar 

  • Gichuru EK, Agwanda CO, Combes MC, Mutitu EW, Ngugi ECK, Bertrand B et al (2008) Identification of molecular markers linked to a gene conferring resistance to coffee berry disease (Colletotrichum kahawae) in Coffea arabica L. Plant Pathol 57(6):1117–1124

    Article  CAS  Google Scholar 

  • Gongora CE, Molina D, Acuña R (2015) Heterologous gene approaches to introduce resistance to coffee insects and diseases in Colombia. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–12 Sep 2014 (in press)

  • Guerreiro Filho O (2006) Coffee leaf miner resistance. Braz J Plant Physiol 18:109–117

    Article  Google Scholar 

  • Guillaumet JL, Hallé F (1967) Etude da la variabilité du Coffea arabica dans son aire d’origine. Rapport ORSTOM, Paris

    Google Scholar 

  • Guyot B, Gueule D, Manez JC, Perriot JJ, Giron J, Villain L (1996) Influence de l’altitude et de l’ombrage sur la qualité des cafés arabica. Plant Rech Dévelop 3:272–280

    Google Scholar 

  • Haarer AE (1962) Modern coffee production. Leonard Hill, London

    Google Scholar 

  • Heffner EL, Sorrels ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Hein L, Gatzweiler F (2006) The economic value of coffee (Coffea arabica) genetic resources. Ecol Econ 60:176–185

    Article  Google Scholar 

  • Herrera JC, Combes MC, Cortina H, Alvarado G, Lashermes Ph (2002a) Gene introgression into Coffea arabica by way of triploid hybrids (C. arabica x C. Canephora). Heredity 89:488–494

    Article  CAS  PubMed  Google Scholar 

  • Herrera JC, Combes MC, Anthony F, Charrier A, Lashermes Ph (2002b) Introgression into the allotetraploid coffee (Coffea arabica L.): segrtegation and recombinationof the C. canephora genome in the tetraploid interspecific hybrid (C. arabica x C. canephora). Theor Appl Genet 104:661–668

  • Herrera JC, Dereeper A, Posada H, Combes MC, Lashermes Ph (2015) Inferring the introgressive status of the natural Timor Hybrid (Coffea sp.) based on single nucleotide polymorphisms as deduced from RNAseq data analysis. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–12 Sep 2014 (in press)

  • Huibers RP, Loonen AEH, Gao D, Van den Ackerveken G, Visser RGF, Bai Y (2013) Powdery mildew resistance in tomato by impairment of SIPMR4 and SIDMR1. PLoS ONE 8(6):e67467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • ICGN (2014a) International Coffee Genome Network. http://www.coffeegenome.org

  • ICGN (2014b) Report 7th Coffee genomics workshop held at the XXII plant and animal genome meeting, San Diego, California, 11–15 Jan 2014. http://www.coffeegenome.org/communications/meeting

  • ICO (2014) World coffee trade 1963–2013: a review of the markets, challenges and opportunities for the sector. http://www.ico.org

  • Illy A, Viani R (eds) (2005) Espresso coffee: the science of quality, 2nd edn. Elsevier Academic Press, Amsterdam, London, New York

    Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genom 9:166–177

    Article  CAS  Google Scholar 

  • Jaramillo J, Borgemeister C, Baker P (2006) Coffee berry borer Hypothenemus hampei (Coleoptera; Curculionidae): searching for sustaianble control strategies. Bull Entomol Res 96:223–233

    Article  CAS  PubMed  Google Scholar 

  • Joët T (2015) Coffee quality and metabolic pathways of the aroma/flavour precursors. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–14 Sep 2014 (in press)

  • Joët T, Pot D, Ferreira LC, Dussert S, Marraccini P (2012) Identification des déterminants moléculaires de la qualité du café par approches de génomique fonctionelle. Une revue. Cah Agric 21(2–3):125–133

    Google Scholar 

  • Kilambo DL, Mtenga DJ, Ng’Homa NM, Ngomou RS, Teri JM, Mlwilo BL (2015) A decade of contributing to a profitable and sustainable coffee industry in Tanzania: the arabica and robusta improvement programmes. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–14 Sep 2014 (in press)

  • Labouisse JP, Adolphe C (2012) Conservation et gestion des ressources génétiques du caféier arabica (Coffea arabica L.): un défi pour l’Éthiopie. Cah Agric 21(2-3):98–105

  • Labouisse JP, Bellachew B, Kotecha S, Bertrand B (2008) Current status of coffee (Coffea arabica) genetic resources in Ethiopia: implications for conservation. Genet Res Crop Evol 55:1079–1093

    Article  Google Scholar 

  • Läderach P, Lundy M, Jarvis A, Ramirez J, Pereze Portilla E, Schepp K, Eitzinger A (2010) Impact of climate change on coffee production and coffee-supply chains. In: Leal W (ed) The economic, social and political elements of climate change. Springer-Verlag, Berlin, pp 703–724

    Google Scholar 

  • Lashermes Ph, Combes MC, Dereeper A, Hueber Y (2015). Genomic insights into the origin and diversification of Coffea arabica: implications for coffee breeding. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–12 Sep 2014 (in press)

  • Lashermes Ph, Combes MC, Robert J, Trouslot P, D’Hont A, Anthony F, Charrier A (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Genet 261:266–359

    Article  Google Scholar 

  • Lashermes Ph, Combes MC, Ansaldi C, Gichuru E, Noir S (2011) Analysis of alien introgression in coffee tree (Coffea arabica L.). Mol Breeding 27(2):223–232

  • Lejeune JBH (1958) Rapport au Gouvernement Impérial d’Ethiopie sur la production caféiers. FAO Rapport PEAT 797, Rome

  • Leroy T, Henry AM, Royer M, Altosar I, Frutos R, Duris D, Philippe R (2000) Genetically modified coffee plants expressing the Bacillus thuringiensis cry Ac gene for resistance to leaf miner. Plant Cell Rep 19:382–389

  • Magesa JM, Mushi IK, Shayo G. NG’Homa NM, Mdemu S, Tarimo E, Teri J (2013) Strengthening producer organizations to speed up the multiplication of improved hybrid coffee varieties in Tanzania. Proceedings of the 24rd ASIC international conference on coffee science, San José, Costa Rica, 11–16 Nov 2012. pp 711–720

  • Mahé L, Várzea VMP, Le Pierrès D, Combes MC, Lashermes Ph (2007) A new source of resistance against coffee leaf rust from New-Caledonian natural interspecific hybrids between Coffea arabica and Coffea canephora. Plant Breed 126:638–641

    Article  Google Scholar 

  • Mahé L, Combes MC, Várzea VMP, Guilaumon C, Lashermes Ph (2008) Development of sequence characterized DNA markers linked to leaf rust (Hemileia vastatrix) resistance in coffee (Coffea rabica L). Mol Breed 21:105–113

    Article  Google Scholar 

  • Maro GP, Teri JM, Magina FL, Nkya EO (2013) Effect of shade on yields of selected improved hybrid Coffea arabica varieties in Tanzania. Proceedings of the 24th ASIC international conference on coffee science, San José, Costa Rica, 11–16 Nov 2012. pp 1203–1207

  • Marraccini P, Freire LP, Alves GSC, Vieira NG, Vinecky F, Elbet S, Ramos HJO, Montagnon C, Vieira LGE, Leroy T, Silva VA, Rodrigues G, Andrade C (2011) RBCS1 expression in coffee: Coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress. BMC Plant Biol 11:85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marraccini P, Vinecky F, Alves GSC, Ramos HJO, Elbet S, Vieira NG, Carneiro FA, Sujii PS, Alekcevetch JC, Silva VA, DaMatta FM, Ferrão MAG, Leroy T, Pot D, Vieira LGE, da Silva FR, Andrade AC (2012) Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. J Exp Bot 63(1):4191–4212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer FG, Fernie LM, Narasimhaswamy RL, Monaco LC, Greathead DJ (1968) FAO Coffee Mission to Ethiopia 1964–1965. FAO Rome

  • Mitchell HW (1988) Cultivation of the arabica coffee tree. In: Clarke RJ, Macrae R (eds). Coffee vol. 4: Agronomy. Elsevier Applied Science, London and New York. pp 43–90

  • Moncada P, Tovar E, Montoya JC, Gonzales A, Spindel J, McCouch S (2015) A genetic linkage map of coffee (Coffea arabica L.) and QTL for yield, plant height and bean size. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–12 Sep 2014 (in press)

  • Mueller L, Strickler S, Domingues D, Pereira, L, Andrade A, Marraccini P, Ming R, Wai J, Albert V, Guiliano G, Descombes P, Moine D, Guyot R, Poncet V, Hamon S, Tranchant C, De Kochko A, Lepelley M, Rigeoreau M, Crouzillat D (2015) Towards a better understanding of the Coffea arabica genome structure. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–12 Sep 2014 (in press)

  • Muschler RG (2001) Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agrofor Syst 85:131–139

    Article  Google Scholar 

  • Nagai Ch, Rakotomalala JJ, Katahira R, Li Y, Yamagata K, Ashihara H (2008) Production of a new low-caffeine hybrid coffee and the biochemical mechanism of low caffeine accumulation. Euphytica 164:133–142

    Article  CAS  Google Scholar 

  • Neill J (2013) Central American coffee rust crisis: no easy answers. STIR tea & coffee industry international July/August 2013, pp 46–49

  • Opile WR, Agwanda CO (1993) Propagation and distribution of cultivar Ruiru 11: a review. Kenya Coffee 58:1496–1508

    Google Scholar 

  • Pavan S, Jacobsen E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12

    Article  PubMed Central  PubMed  Google Scholar 

  • Pendergrast M (1999) Uncommon Grounds: the history of coffee and how it transformed our world. Basic Books, Perseus Books Groups, New York

    Google Scholar 

  • Prakash NS, Marques DV, Varzea VMP, Silva MC, Combes MC, Lashermes Ph (2004) Introgression molecular analysis of a leaf rust resistance gene from Coffea liberica into C. arabica L. Theor Appl Genet 109:1311–1317

    Article  CAS  PubMed  Google Scholar 

  • Privat I, Bardil A, Gomez AB, Severac D, Dantec C, Fuentes I, Mueller L, Joët T, Pot D, Foucrier S, Dussert S, Leroy T, Journot L, de Kochko A, Campa C, Combes MC, Lashermes Ph, Bertrand B (2011) The “Puce Café” Project: the first 15 k Coffee Microarray, a new tool for discovering candidate genes correlated to agronomic and quality traits. BMC Genom 12:5. doi:10.1186/1471-2164-12-5

    Article  CAS  Google Scholar 

  • Rodrigues Jr CJ, Várzea V, Silva MC, Guerra-Guimarães L, Rochetta M, Marques DV. (2000) Recent advances on coffee leaf rust. Proceedings of the international scientific symposium on coffee, Bangalore, India, 4 Dec 2000. pp 179 –193

  • Setotaw TA, Texeira Caixeta E, Fereire Pena G, Zambolim EM, Pereira AA, Sakiyama NS (2010) Breeding potential and genetic diversity of “Hibrido do Timor” coffee evaluated by molecular markers. Crop Breed Appl Biotechnol 10:298–304

    Article  CAS  Google Scholar 

  • Silva MC, Várzea V, Guerra-Guimarães L, Gil Azinheira H, Fernandez D, Petitot AS, Bertrand B, Lashermes Ph, Nicole M (2006) Coffee resistance to the main diseases: leaf rust and coffee berry disease. Braz J Plant Physiol 18:119–147

    Article  CAS  Google Scholar 

  • Silvarolla MB, Mazzafera P, Fazuoli LC (2004) A naturally decaffeinated arabica coffee. Nature 429:826

    Article  CAS  PubMed  Google Scholar 

  • Sylvain PG (1955) Some observations on Coffea arabica in Ethiopia. Turrialba 5:37–53

    Google Scholar 

  • Teri J, Kilambo D, Nyange NE, Nzallawahe TS, Chipungahelo GS, Kipokola TP, Kullaya IK (2004) Improved arabica varieties for the benefit of Tanzanian coffee growers. Proceedings of the 20th ASIC international conference on coffee science, Bangalore, India. pp 1187–1191

  • Thomas AS (1942) The wild arabica coffee on the Boma Plateau of Anglo-Egyptian Sudan. Emp J Exp Agric 10:207–212

    Google Scholar 

  • Vaast Ph, Bertrand B, Perriot JJ, Guyot B, Génard M (2006) Fruit thinning and shade improves bean characteristics and beverage quality of coffee (Coffea arabica) under optimal conditions. J Sci Food Agric 86:197–204

    Article  CAS  Google Scholar 

  • Van der Vossen HAM (1985) Coffee selection and breeding. In: Clifford C, Willson J (eds) Coffee botany, biochemistry and production of beans and beverage. Croom Helm, London, pp 48–96

    Google Scholar 

  • Van der Vossen HAM (2001) Coffee breeding practices. In: Clarke RJ, Vitzthum OG (eds) Coffee: recent developments. Blackwell Science Ltd, Oxford, pp 184–201

    Chapter  Google Scholar 

  • Van der Vossen HAM (2005) A critical analysis of the agronomic and economic sustainability of organic coffee production. Expl Agric 41:449–473

    Article  Google Scholar 

  • Van der Vossen HAM (2009) The cup quality of disease-resistant cultivars of arabica coffee (Coffea arabica). Expl Agric 45:323–332

    Article  Google Scholar 

  • Van der Vossen HAM (2013) Improving water productivity in arabica coffee. Proceedings of the 24rd ASIC international conference on coffee science, San José, Costa Rica, 11–16 Nov 2012. pp 711–720

  • Van der Vossen HAM, Browning G (1978) Prospects of selecting genotypes of Coffea arabica L. which do not require tonic sprays of fungicide for increased leaf retention and yield. J Hortic Sci 53:225–233

    Google Scholar 

  • Van der Vossen HAM, Walyaro DJ (2009) Additional evidence for oligogenic inheritance of durable host resistance to coffee berry disease (Colletotrichum kahawae) in arabica coffee (Coffea arabica L.). Euphytica 165:105–111

    Article  Google Scholar 

  • Venkatesha MG, Dinesh AS (2012) The white stemborer Xylotrechus quadripes (Coleoptera: Cerambycidae): bioecology, status and management. Int J Trop Insect Sci 31:177–188

    Article  Google Scholar 

  • Vieira A, Talhinas P, Loureiro A, Duplessis S, Fernandez D, Silva MC, Paulo OS, Azinheira H (2011) Validation of RT-qPCR reference genes for in planta expression studies in Hemileira vastatrix, the causal agent of coffee leaf rust. Fungal Biol 115:891–901

    Article  CAS  PubMed  Google Scholar 

  • Visser RGF, Meijboom P, Bai Y (2015). Improving pathogen resistance by exploiting plant susceptibility genes. Proceedings of the 25th ASIC international conference on coffee science, Armenia, Colombia, 8–14 Sep 2014. (in press)

  • Walyaro DJ (1983) Considerations in breeding for improved yield and quality (Coffea arabica L). Doctoral Thesis, Agricultural University Wageningen

  • WCR (2014) World coffee research annual report 2012–2013. http://worldcoffeeresearch.org

  • Wintgens JN (ed) (2009) Coffee: growing, processing, sustainable production. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Wrigley G (1988) Coffee., Tropical agriculture series, Longmans Scientific and Technical, Harlow

  • Zambolim L, Zambolim EM, Várzea VMP (eds) (2005) Durable resistance to coffee leaf rust. Proceedings of the 1st international workshop on coffee leaf rust at the Universidade Federal de Viçosa, Departamento de Fitopatologia, Viçosa, MG Brazil, 26–28 Sep 2005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert van der Vossen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Vossen, H., Bertrand, B. & Charrier, A. Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): a review. Euphytica 204, 243–256 (2015). https://doi.org/10.1007/s10681-015-1398-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1398-z

Keywords

Navigation