Skip to main content

Detection of a new QTL/gene for growth habit in chickpea CaLG1 using wide and narrow crosses

Abstract

A recombinant inbred line population (RIP-9) derived from an interspecific cross (ILC72 × Cr5-10) was evaluated for growth habit during 2 years (2003 and 2004). This RIP was used to develop a pair of near isogenic lines (NILs) for erect vs prostrate growth habit in chickpea. Molecular characterization of the identified pair of NILs was performed using 52 sequence tagged microsatellite site markers distributed over different chickpea linkage groups (CaLG) of the genetic map. It revealed polymorphic markers in CaLG1 and CaLG3. Starting from a previous data base simple linear regression was applied to detect association between markers and growth habit. The RAPD (random amplified polymorphic DNA) marker OPAD091053 mapped on CaLG1 explained the highest percentage (maximum 15.4 %) of the total phenotypic variation for growth habit and it was used to develop a SCAR (sequence characterized amplified region) marker (SCAD091053). New markers were developed from sequences surrounding SCAD091053 in the physical map. QTL (quantitative trait loci) analysis revealed a new QTL (QTLHg2) in CaLG1. The Indel marker (deletion/insertion) Indel 3 and the predicted gene Ca_07000 (14,5 Mb of Ca1) and (15,3 Mb of Ca1) had the highest LOD values explaining 24.6 and 23.4 % of the phenotypic variation in years 2003 and 2004, respectively. To confirm these results, another RIP (RIP-5) derived from an intraspecific cross (WR315 × ILC3279) and segregating for erect vs semi-erect growth habit was employed. RIP-5 allowed mapping the gene (Hg2/hg2) on CaLG1 that was flnaked by two Indel markers (Indel 1 and Indel 2) in the range of 12,3 and 16,2 Mb. So, Hg2/hg2 gene corresponds to QTLHg2 region. The annotated genes Ca_07000 and Ca_06999 were homologues to predicted zinc finger genes in Glycine max and Pisum sativum, respectively. Hence, they could be considered as possible candidate genes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Ali LE, Madrid E, Varshney RK, Azam S, Millan T, Rubio J, Gil J (2014) Mapping and identification of a Cicer arietinum NSP2 gene involved in nodulation pathway. Theor Appl Genet 127:481–488. doi:10.1007/s00122-013-2233-3

    Article  CAS  PubMed  Google Scholar 

  • Ali-Benali MA, Badawi M, Houde Y, Houde M (2013) Identification of oxidative stress-responsive C2H2 zinc fingers associated with Al tolerance in near-isogenic wheat lines. Plant Soil 366:199–212. doi:10.1007/s11104-012-1417-y

    Article  CAS  Google Scholar 

  • Aryamanesh N, Nelson MN, Yan G, Clarke HJ, Siddique KHM (2010) Mapping a major gene for growth habit and QTLs for ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum. Euphytica 173:307–319. doi:10.1007/s10681-009-0086-2

    Article  Google Scholar 

  • Avila CM, Nadal SM, Moreno MT, Torres AM (2006) Development of a simple PCR-based marker for the determination of growth habit in Vicia faba L. using a candidate gene approach. Mol Breed 17:185–190. doi:10.1007/s11032-005-4075-4

    Article  CAS  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83. doi:10.1126/science.275.5296.80

    Article  CAS  PubMed  Google Scholar 

  • Castro P, Pistón F, Madrid E, Millan T, Gil J, Rubio J (2010) Development of chickpea near-isogenic lines for fusarium wilt. Theor Appl Genet 121:1519–1526. doi:10.1007/s00122-010-1407-5

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cobos MJ, Rubio J, Strange RN, Moreno MT, Gil L, Millan T (2006) A new QTL for Ascochyta blight resistance in a RIL population derived from an interspecific cross in chickpea. Euphytica 149:105–111. doi:10.1007/s10681-005-9058-3

    Article  Google Scholar 

  • Cobos MJ, Winter P, Kharrat M, Cubero JI, Millan T, Rubio J (2009) Genetic analysis of agronomic traits in a wide cross of chickpea. Field Crops Res 111:130–136. doi:10.1016/j.fcr.2008.11.006

    Article  Google Scholar 

  • Dardick C, Callahan A, Horn R, Ruiz KB, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R (2013) PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J 75:618–630. doi:10.1111/tpj.12234

    Article  CAS  PubMed  Google Scholar 

  • Espinoza LL, Huguet T, Julier B (2012) Multi-population QTL detection for aerial morphogenetic traits in the model legume Medicago truncatula. Theor Appl Genet 124:739–754. doi:10.1007/s00122-011-1743-0

    Article  Google Scholar 

  • FAOSTAT (2013) http://faostat.fao.org. Accessed Jan 2013

  • Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N, Banfield MJ, Rameau C (2003) Determinate and late flowering are two terminal flower1/centroradialis homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15:2742–2754. doi:10.1105/tpc.015701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaur PM, Gowda CLL, Knights EJ, Warketin T, Acikgöz N, Yadav SS, Kumar J (2007) Breeding achievements. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CABI Publ, Wallingford, pp 391–416

    Chapter  Google Scholar 

  • Hughes C (1998) Genetics and genetic modifications of plant architecture in grain legumes: a review. Agronomie 18:383–411. doi:10.1051/agro:19980505

    Article  Google Scholar 

  • Imtiaz M, Materne M, Hobson K, van Ginkel M, Malhotra RS (2008) Molecular genetic diversity and linked resistance to ascochyta blight in Australian chickpea breeding materials and their wild relatives. Aust J Agric Res 59:554–560

    Article  CAS  Google Scholar 

  • Iruela M, Rubio J, Barro F, Cubero JI, Millan T, Gil J (2006) Detection of two quantitative trait loci for resistance to ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. Theor Appl Genet 112:278–287. doi:10.1007/s00122-005-0126-9

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Akhilesh K, Tyagi AK, Chattopadhyay D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729. doi:10.1111/tpj.12173

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Huang W, Gao J, Yang J, Shi M, Zhu M, Luo D, Lin H (2008) Genetic control of rice plant architecture under domestication. Nat Genet 40:1365–1369. doi:10.1038/ng.247

    Article  CAS  PubMed  Google Scholar 

  • Johnson HW, Bernard RL (1962) Soybean genetic and breeding. Adv Agrom 14:149–221

    Google Scholar 

  • Kalendar R, Lee D, Schulman AH (2009) FastPCR software for PCR primer and probe design and repeat search. Genes Genomes Genomics 3:1–14

    Google Scholar 

  • Kazan K, Muehlbauer FJ, Weeden NF, Ladizinsky G (1993) Inheritance and linkage relationships of morphological and isozyme loci in chickpea (Cicer arietinum L.). Theor Appl Genet 86:417–426. doi:10.1007/BF00838556

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175. doi:10.1111/j.1469-1809.1943.tb02321.x

    Article  Google Scholar 

  • Ku L, Wei X, Zhang S, Zhang J, Guo S, Chen Y (2011) Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize (Zea mays L.). PLoS One 6:e20621. doi:10.1371/journal.pone.0020621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ladizinsky G (1979) The genetics of several morphological traits in the lentil. J Hered 70:135–137

    Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lichtenzveig J, Schiuring C, Dodoge J, Abbo S, Zhang HB (2005) Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L. Theor Appl Genet 110:492–510. doi:10.1007/s00122-004-1857-8

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J (2010) The Soybean Stem Growth Habit Gene Dt1 Is an Ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol 153:198–210. doi:10.1104/pp.109.150607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Millan T, Winter P, Jüngling R, Gil J, Rubio J, Cho S, Cobos MJ, Iruela M, Rajesh PN, Tekeoglu M, Kahl G, Muehlbauer FJ (2010) A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. Euphytica 175:175–189. doi:10.1007/s10681-010-0157-4

    Article  CAS  Google Scholar 

  • Muehlbauer FJ, Singh KB (1987) Genetic of chickpea. In: Saxena MC, Singh KB (eds) The Chickpea. CABI Publ, Wallingford, pp 99–125

    Google Scholar 

  • Nayak S, Zhu H, Varghese N, Datta S, Choi H-K, Horres R, Jüngling R, Singh J, Kavi Kishor PB, Sivaramakrishnan S, Hoisington D, Kahl G, Winter P, Cook D, Varshney R (2010) Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 120:1415–1441. doi:10.1007/s00122-010-1265-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neff MM, Joseph JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392. doi:10.1046/j.1365-313X.1998.00124.x

    Article  CAS  PubMed  Google Scholar 

  • Palomino C, Fernández-Romero MD, Rubio J, Torres A, Moreno MT, Millán T (2009) Integration of new CAPS and dCAPS-RGA markers into a composite chickpea genetic map and their association with disease resistance. Theor Appl Genet 118:671–682. doi:10.1007/s00122-008-0928-7

    Article  CAS  PubMed  Google Scholar 

  • Rajesh P, Tullu A, Gil J, Gupta V, Ranjekar P, Muehlbauer F (2002) Identification of an STMS marker for the double-podding gene in chickpea. Theor Appl Genet 105:604–607. doi:10.1007/s00122-002-0930-4

    Article  CAS  PubMed  Google Scholar 

  • Repinski SL, Kwak M, Gepts P (2012) The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1. Theor Appl Genet 124:1539–1547. doi:10.1007/s00122-012-1808-8

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (1999) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz S (eds) Bioinformatics methods and protocols, vol 132. Methods in molecular biology™. Humana Press, pp 365–386. doi:10.1385/1-59259-192-2:365

  • Rubio J, Moreno MT, Cubero JI, Gil J (1998) Effect of the gene for double pod in chickpea on yield, yield components and stability of yield. Plant Breed 117:585–587. doi:10.1111/j.1439-0523.1998.tb02214.x

    Article  Google Scholar 

  • Rubio J, Flores F, Moreno MT, Cubero JI, Gil J (2004) Effects of the erect/bushy habit, single/double pod and late/early flowering genes on yield and seed size and their stability in chickpea. Field Crops Res 90:255–262. doi:10.1016/j.fcr.2004.03.005

    Article  Google Scholar 

  • Saha GC, Sarker A, Chen W, Vandemark GJ, Muehlbauer FJ (2013) Inheritance and linkage map positions of genes conferring agromorphological traits in Lens culinaris Medik. Int J Agron. doi:10.1155/2013/618926

    Google Scholar 

  • Sethy NK, Shokeen B, Edwards KJ, Bhatia S (2006) Development of microsatellite markers and analysis of intraspecific genetic variability in chickpea (Cicer arietinum L.). Theor Appl Genet 112:1416–1428. doi:10.1007/s00122-006-0243-0

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C (2008) Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40:1360–1364. doi:10.1038/ng.197

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84:803–811. doi:10.1007/BF00227388

    Article  PubMed  Google Scholar 

  • Van Ooijen JW (2004). MAPQIL® 5, Software for the mapping of quantitative trait loci in experimental populations. In: Kyazma B.V., Wagenningen

  • Van Ooijen J, Sandbrink H, Purimahua C, Vrielink R, Verkerk R, Zabel P, Lindhout P (1993) Mapping quantitative genes involved in a trait assessed on an ordinal scale: a case study with bacterial canker in Lycopersicon peruvianum. In: Yoder J (ed) Molecular biology of tomato-fundamental advances and crop improvements. A Technomic Publishing Company Book, Lancaster, pp 59–74

    Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246. doi:10.1038/nbt.2491

    Article  CAS  PubMed  Google Scholar 

  • Winter P, Pfaff T, Udupa SM, Hüttel B, Sharma PC, Sahi S, Arreguin-Espinoza R, Weigand F, Muehlbauer FJ, Kahl G (1999) Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262:90–101. doi:10.1007/s004380051063

    Article  CAS  PubMed  Google Scholar 

  • Xue S, Xu F, Li G, Zhou Y, Lin M, Gao Z, Su X, Xu X, Jiang G, Zhang S, Jia H, Kong Z, Zhang L, Ma Z (2013) Fine mapping TaFLW1, a major QTL controlling flag leaf width in bread wheat (Triticum aestivum L.). Theor Appl Genet 126:1941–1949. doi:10.1007/s00122-013-2108-7

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Lin Z, Li H et al (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52:891–898. doi:10.1111/j.1365-313X.2007.03284.x

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Cao Z, Xu F, Huang Y, Chen M, Guo W, Zhou W, Zhu J, Meng J, Zou J, Jiang L (2012) Analysis of gene expression profiles of two near-isogenic lines differing at a QTL region affecting oil content at high temperatures during seed maturation in oilseed rape (Brassica napus L.). Theor Appl Genet 124:515–531. doi:10.1007/s00122-011-1725-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the project INIA contract RTA2010-00059, co-financed by EU funds (FEDER). Ali L. acknowledges Ph.D. fellowship from Syrian Ministry of High Education and ICRISAT for supporting six months stay at the Center of Excellence in Genomic (ICRISAT, Patancheru, India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ali.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 12 kb) The primer sequences of the markers developed in this study

10681_2015_1369_MOESM2_ESM.docx

Supplementary material 2 (DOCX 15 kb) Microsatellite markers screened in RIP-1 parental lines, their 635 physical positions, primer pairs sequences, PCR predicted size and the obtained size

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, L., Azam, S., Rubio, J. et al. Detection of a new QTL/gene for growth habit in chickpea CaLG1 using wide and narrow crosses. Euphytica 204, 473–485 (2015). https://doi.org/10.1007/s10681-015-1369-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1369-4

Keywords

  • Linkage analysis
  • Cicer
  • Erect
  • Prostrate
  • Semi-erect
  • Physical map