Skip to main content
Log in

Construction of an integrated map through comparative studies allows the identification of candidate regions for resistance to ferrous iron toxicity in rice

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Breeding for resistance to Fe toxicity in rice remains challenging because of the complex nature of this trait. In the past 15 years, several QTL studies have been conducted using different combinations of crosses and environments. The aim of this study was to compile these data in a unique QTL map to identify candidate regions (CR) and, subsequently, candidate genes involved in rice resistance to Fe toxicity. The integrated QTL map was constructed by aligning the flanking markers on the annotated physical map of the rice reference variety Nipponbare. The heat map of QTL density was developed, highlighting four candidate regions (i.e. genomic regions of high QTL density): CR1 on chromosome 1 between markers RM246 and RM443; CR2 on chromosome 2 between markers RM526 and R758; CR3 on chromosome 3 between markers C515 and C25; and CR4 on chromosome 7 between markers R1245 and RM429. The mining of the two genomic regions harbouring the highest QTL density (CR1 and CR3) allowed the identification of 31 and 23 candidate genes in the first and second regions, respectively, based on their known function and/or on the differences in their expression between control and high Fe2+ conditions. The integrated map is a useful tool for breeders, highlighting the positions of reliable QTLs and helping to narrow the target candidate regions for marker-assisted selection. This map also provides a strong starting point for the identification of genes underlying the reported QTLs through the candidate gene approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Asch F, Becker M, Kpongor DS (2005) A quick and efficient screen for resistance to iron toxicity in lowland rice. J Plant Nutr Soil Sci 168:764–773

    Article  CAS  Google Scholar 

  • Audebert A (2006) Iron toxicity in rice – environmental conditions and symptoms. In: Audebert A et al (eds) Iron toxicity in rice-based system in West Africa. Africa Rice Center, Cotonou, pp 18–33

    Google Scholar 

  • Audebert A, Fofana M (2009) Rice yield gap due to iron toxicity in West Africa. J Agron Crop Sci 195:66–76

    Article  CAS  Google Scholar 

  • Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147

    Article  CAS  Google Scholar 

  • Becker M, Asch F (2005) Iron toxicity in rice—conditions and management concepts. J Plant Nutr Soil Sci 168(4):558–573

    Article  CAS  Google Scholar 

  • Briat JF, Duc C, Ravet K, Gaymard F (2010) Ferritins and iron storage in plants. Biochim Biophys Acta Gen Subj 1800:806–814

    Article  CAS  Google Scholar 

  • Chi Y, Cheng Y, Vanitha J, Kumar N, Ramamoorthy R, Ramachandran S, Jiang S-Y (2010) Expansion mechanisms and functional divergence of the glutathione S-transferase family in sorghum and other higher plants. DNA Res 17:1–16

    Article  Google Scholar 

  • Courtois B, Ahmadi N, Khowaja F, Price AH, Rami JF, Frouin JF, Hamelin C, Ruiz M (2009) Rice root genetic architecture: meta-analysis from a drought QTL database. Rice 2:115–128

    Article  Google Scholar 

  • de Dorlodot S, Lutts S, Bertin P (2005) Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice. J Plant Nutr 28:1–20

    Article  Google Scholar 

  • de Drolodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X (2007) Root system architecture opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12(10):474–481

    Article  Google Scholar 

  • Doran G, Eberbach P, Helliwell S (2006) The impact of rice plant roots on the reducing conditions in flooded rice soil. Chemosphere 63:1892–1902

    Article  CAS  PubMed  Google Scholar 

  • Dufey I, Hakizimana P, Draye X, Lutts S, Bertin P (2009) QTL mapping for biomass and physiological parameters linked to resistance mechanisms to ferrous iron toxicity in rice. Euphytica 167:143–160

    Article  CAS  Google Scholar 

  • Dufey I, Hiel M-P, Hakizimana P, Draye X, Lutts S, Koné B, Dramé KN, Konaté KA, Sié M, Bertin P (2012a) Multi-environment QTL mapping and consistency across environments of resistance mechanisms to ferrous iron toxicity in rice. Crop Sci 52(2):539–550

    Article  CAS  Google Scholar 

  • Dufey I, Draye X, Lutts S, Lorieux M, Martinez C, Bertin P (2012b) QTL mapping for resistance to ferrous iron toxicity in rice using an interspecific backcross Oryza sativa x Oryza glaberrima. In: Dufey I Genetic determinism of resistance mechanisms to ferrous iron toxicity in rice. Ph.D. thesis, Université catholique de Louvain (UCL), Louvain-La-Neuve, Belgium, p 173

  • Fageria NK, Santos AB, Barbosa MP, Guimaraes CM (2008) Iron toxicity in lowland rice. J Plant Nutr 31(7–9):1676–1697

    Article  CAS  Google Scholar 

  • Fang WC, Wang JW, Lin CC, Kao CH (2001) Iron induction of lipid peroxidation and effects on antioxidative enzyme activities in rice leaves. Plant Growth Regul 35(1):75–80

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Green MS, Etherington JR (1977) Oxidation of ferrous iron by rice roots: a mechanism for waterlogging tolerance. J Exp Bot 28:678–690

    Article  CAS  Google Scholar 

  • Howeler RH (1973) Iron-induced oranging disease of rice in relation to physiochemical changes in a flooded Oxisol. Soil Sci Soc Am Proc 37:898–903

    Article  CAS  Google Scholar 

  • Jain M, Ghanashyam C, Bhattacharjee A (2010) Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. Genomics 11:73

    PubMed Central  PubMed  Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellites markers: an overview of the recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Khowaja FS, Northon GJ, Courtois B, Price AH (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics 10:276

    Article  PubMed Central  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  CAS  PubMed  Google Scholar 

  • Majerus V, Bertin P, Lutts S (2007a) Effects of iron toxicity on osmotic potential, osmolytes and polyamines concentrations in the African rice (Oryza glaberrima Steud.). Plant Sci 173:96–105

    Article  CAS  Google Scholar 

  • Majerus V, Bertin P, Swenden V, Fortemps A, Lobréaux S, Lutts S (2007b) Organ-dependent responses of the African rice to short-term iron toxicity: ferritin regulation and antioxidative responses. Biol Plant 51(2):303–312

    Article  CAS  Google Scholar 

  • Majerus V, Bertin P, Lutts S (2009) Abscisic acid and oxidative stress implications in overall ferritin synthesis by African rice (Oryza glaberrima Steud.) seedlings exposed to short term iron toxicity. Plant Soil 324:253–265

    Article  CAS  Google Scholar 

  • Marschner H (1995) Functions of mineral nutrients. Mineral nutrition of higher plants. Academic Press, San Diego, pp 313–404

    Chapter  Google Scholar 

  • Ni J, Pujar A, Youens-Clark K, Yap I, Jaiswal P, Tecle I, Tung C-W, Ren L, Spooner W, Wei X, Avraham S, Ware D, Stein L, McCouch S (2009) Gramene QTL database: development, content and applications. Database (Oxford) published online May 12, 2009:bap005

  • Northon GJ, Aitkenhead MJ, Khowaja FS, Whalley WR, Price AH (2008) A bioinformatic and transcriptomic approach to identifying positional candidate genes without fine mapping: and example using rice root-growth QTLs. Genomics 92:344–352

    Article  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  CAS  Google Scholar 

  • Price AH (2006) Believe it or not, QTLs are accurate. Trends Plant Sci 11:213–216

    Article  CAS  PubMed  Google Scholar 

  • Quinet M, Vromman D, Clippe A, Bertin P, Lequeux H, Dufey I, Lutts S, Lefèvre I (2012) Combined transcriptomic and physiological approaches reveal strong differences between short and long term response of rice (Oryza sativa) to iron toxicity. Plant Cell Environ 35(10):1837–1859

    Article  CAS  PubMed  Google Scholar 

  • Sahrawat KL (2004) Iron toxicity in wetland rice and the role of other nutrients. J Plant Nutr 27:1471–1504

    Article  CAS  Google Scholar 

  • Sahrawat KL (2010) Reducing iron toxicity in lowland rice with tolerant genotypes and plant nutrition. Plant Stress 4(Special issue 2):70–75

    Google Scholar 

  • Shimizu A (2009) QTL analysis of genetic tolerance to iron toxicity in rice (Oryza sativa L.) by quantification of bronzing score. J New Seeds 10(3):171–179

    Article  Google Scholar 

  • Shimizu A, Guerta CQ, Gregorio GB, Kawasaki S, Ikehashi H (2005) QTLs for nutritional contents of rice seedlings (Oryza sativa L.) in solution cultures and its implication to tolerance to iron-toxicity. Plant Soil 275:57–66

    Article  CAS  Google Scholar 

  • Stein RJ, Duarte GL, Spohr MG, Lopes SIG, Fett JP (2009a) Distinct physiological responses of two rice cultivars subjected to iron toxicity under field conditions. Ann Appl Biol 154:269–277

    Article  CAS  Google Scholar 

  • Stein RJ, Ricachenevsky FK, Fett JP (2009b) Differential regulation of the two rice ferritin genes (OsFER1 and OsFER2). Plant Sci 177:563–569

    Article  CAS  Google Scholar 

  • Suh HJ, Kim CS, Lee JY, Jung J (2002) Photodynamic effect of iron excess on photosystem II function in pea plants. Photochem Photobiol 75:513–518

    Article  CAS  PubMed  Google Scholar 

  • Wan JL, Zhai HQ, Wan JM, Ikehashi H (2003a) Detection and analysis of QTLs for ferrous iron toxicity tolerance in rice, Oryza sativa L. Euphytica 131:201–206

    Article  CAS  Google Scholar 

  • Wan JL, Zhai HQ, Wan JM, Yasui H, Yoshimura A (2003b) Mapping QTL for traits associated with resistance to ferrous iron toxicity in rice (Oryza sativa L.), using japonica chromosome segment substitution lines. Yi Chuan Xue Bao 30(10):893–898

    CAS  PubMed  Google Scholar 

  • Wan JL, Zhai HQ, Wan JM, Yasui H, Yoshimura A (2004) Detection and analysis of QTLs associated with resistance to ferrous iron toxicity in rice (Oryza sativa L.), using recombinant inbred lines. Acta Agron Sin 30(4):329–333

    Google Scholar 

  • Wan JL, Zhai HQ, Wan JM (2005) Mapping of QTLs for ferrous iron toxicity tolerance in rice (Oryza sativa L.). Yi Chuan Xue Bao 32(11):1156–1166

    CAS  PubMed  Google Scholar 

  • Wu P, Luo A, Zhu J, Yang J, Huang N, Senadhira D (1997) Molecular markers linked to genes underlying seedling tolerance for ferrous iron toxicity. Plant Soil 196(2):317–320

    Article  CAS  Google Scholar 

  • Wu P, Hu B, Liao CY, Zhu JM, Wu YR, Senadhira D, Paterson AH (1998) Characterization of tissue tolerance to iron by molecular markers in different lines of rice. Plant Soil 203:217–226

    Article  CAS  Google Scholar 

  • Zhu M, Zhao S (2007) Candidate gene identification approach: progress and challenges. Int J Biol Sci 3(7):420–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Bertin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dufey, I., Mathieu, AS., Draye, X. et al. Construction of an integrated map through comparative studies allows the identification of candidate regions for resistance to ferrous iron toxicity in rice. Euphytica 203, 59–69 (2015). https://doi.org/10.1007/s10681-014-1255-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1255-5

Keywords

Navigation