Skip to main content
Log in

SNP markers linked to QTL conditioning plant height, lodging, and maturity in soybean

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Soybean (Glycine max L. Merr.) is a major crop and a leading source of protein meal and edible oil worldwide. Plant height (PHT), lodging (LDG), and days to maturity (MAT) are three important agronomic traits that influence the seed yield of soybean. The objective of this study was to map quantitative trait loci (QTL) for PHT, LDG and MAT using a high density SNP map of a recombinant inbred line soybean mapping population. With single factor analysis of variance six, four, and three QTL were identified across environments for PHT, LDG, and MAT, respectively. Several QTL for each trait were also detected by composite interval mapping with high confidence. Two and one QTL for PHT and LDG, respectively were novel QTL identified in this study. Additionally, most QTL identified in the present study are flanked by two or more SNP markers that are closely linked to each QTL. The SNP markers identified to be closely linked to each QTL in this study are valuable for marker assisted selection (MAS) of the QTL by interested soybean breeding programs. Thus, this study clearly advances the knowledge on genetic controls of plant height, lodging and maturity in soybean, and identifies more efficient and reliable markers for MAS for these traits than those currently exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ablett GR, Beversdorf WD, Dirks VA (1989) Performance and stability of indeterminate and determinate soybean in short-season environments. Crop Sci 29:1428–1433

    Article  Google Scholar 

  • Chapman A, Pantalone VR, Ustun A, Allen FL, Landau-Ellis D, Trigiano RN, Gresshoff PM (2003) Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population. Euphytica 129:387–393

    Article  CAS  Google Scholar 

  • Chen Q, Zhang Z, Liu C, Xin D, Qiu H, Shan D, Shan C, Hu D (2007) QTL analysis of major agronomic traits in soybean. Agric Sci China 6:399–405

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cober ER, Morrison MJ (2010) Regulation of seed yield and agronomic characters by photoperiod sensitivity and growth habit genes in soybean. Theor Appl Genet 120:1005–1012

    Article  CAS  PubMed  Google Scholar 

  • Crossa J, Beyene Y, Kassa S, Perez P, Hickey JM, Chen C, de los Campos G, Burgueno J, Windhausen VS, Buckler E, Jannink J, Lopez Cruz MA, Babu R (2013) Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3-Genes Genomes Genet 3:1903–1926

  • Ellis ML, Wang H, Paul PA, St Martin SK, McHale LK, Dorrance AE (2012) Identification of soybean genotypes resistant to Fusarium graminearum and genetic mapping of resistance quantitative trait loci in the cultivar Conrad. Crop Sci 52:2224–2233

    Article  Google Scholar 

  • Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merr. Crop Sci 11:929–931

    Article  Google Scholar 

  • Hanson WD (1963) Heritability. In: Hanson WD, Robinson HF (eds) Statistical genetics and plant breeding. National Academy of Sciences-National Research Council, Washington, D.C., pp 125–140

    Google Scholar 

  • Hufford MB, Xu X, van Heerwaarden J, Pyhaejaervi T, Chia J, Cartwright RA, Elshire RJ, Glaubitz JC, Guill KE, Kaeppler SM, Lai J, Morrell PL, Shannon LM, Song C, Springer NM, Swanson-Wagner RA, Tiffin P, Wang J, Zhang G, Doebley J, McMullen MD, Ware D, Buckler ES, Yang S, Ross-Ibarra J (2012) Comparative population genomics of maize domestication and improvement. Nat Genet 44:808–811

    Article  CAS  PubMed  Google Scholar 

  • Huo N, Garvin DF, You FM, McMahon S, Luo MC, Gu YQ, Lazo GR, Vogel JP (2011) Comparison of a high-density genetic linkage map to genome features in the model grass Brachypodium distachyon. Theor Appl Genet 123:455–464

    Article  PubMed  Google Scholar 

  • Hwang EY, Song Q, Jia G, Specht JE, Hyten DL, Costa J, Cregan PB (2014) A genome-wide association study of seed protein and oil content in soybean. BMC Genomics 15:1. doi:10.1186/1471-2164-15-1

    Article  PubMed Central  PubMed  Google Scholar 

  • Hyten DL, Choi I, Song Q, Specht JE, Carter TE Jr, Shoemaker RC, Hwang E, Matukumalli LK, Cregan PB (2010) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci 50:960–968

    Article  CAS  Google Scholar 

  • Jun T, Mian MAR, Michel AP (2012a) Genetic mapping revealed two loci for soybean aphid resistance in PI 567301B. Theor Appl Genet 124:13–22

    Article  CAS  PubMed  Google Scholar 

  • Jun T, Mian MAR, Kang S, Michel AP (2012b) Genetic mapping of the powdery mildew resistance gene in soybean PI 567301B. Theor Appl Genet 125:1159–1168

    Article  CAS  PubMed  Google Scholar 

  • Jun T, Freewalt K, Michel AP, Mian MAR (2014) Identification of novel QTL for leaf traits in soybean. Plant Breed 133:61–66

    Article  CAS  Google Scholar 

  • Kim MY, Lee S, Van K, Kim T, Jeong S, Choi I, Kim D, Lee Y, Park D, Ma J, Kim W, Kim B, Park S, Lee K, Kim DH, Kim KH, Shin JH, Jang YE, Do Kim K, Liu WX, Chaisan T, Kang YJ, Lee Y, Kim K, Moon J, Schmutz J, Jackson SA, Bhak J, Lee S (2010) Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc Natl Acad Sci USA 107:22032–22037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim M, Hyten DL, Niblack TL, Diers BW (2011) Stacking resistance alleles from wild and domestic soybean sources improves soybean cyst nematode resistance. Crop Sci 51:934–943

    Article  Google Scholar 

  • Kim KS, Diers BW, Hyten DL, Mian MAR, Shannon JG, Nelson RL (2012) Identification of positive yield QTL alleles from exotic soybean germplasm in two backcross populations. Theor Appl Genet 125:1353–1369

    Article  PubMed  Google Scholar 

  • Lam H, Xu X, Liu X, Chen W, Yang G, Wong F, Li M, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Bailey MA, Mian MAR, Shipe ER, Ashley DA, Parrott WA, Hussey RS, Boerma HR (1996a) Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit. Theor Appl Genet 92:516–523

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Bailey MA, Mian MAR, Carter TE, Ashley DA, Hussey RS, Parrott WA, Boerma HR (1996b) Molecular markers associated with soybean plant height, lodging, and maturity across locations. Crop Sci 36:728–735

    Article  CAS  Google Scholar 

  • Lee S, Mian MAR, McHale LK, Wang H, Wijeratne AJ, Sneller CH, Dorrance AE (2013a) Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841. Theor Appl Genet 126:1121–1132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee S, Mian MAR, McHale LK, Sneller CH, Dorrance AE (2013b) Identification of quantitative trait loci conditioning partial resistance to Phytophthora sojae in soybean PI 407861A. Crop Sci 53:1022–1031

    Article  CAS  Google Scholar 

  • Lee S, Mian MA, Sneller CH, Wang H, Dorrance AE, McHale LK (2014) Joint linkage QTL analyses for partial resistance to Phytophthora sojae in soybean using six nested inbred populations with heterogeneous conditions. Theor Appl Genet 127:429–444

    Article  PubMed  Google Scholar 

  • Li D, Pfeiffer TW, Cornelius PL (2008a) Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci 48:571–581

    Article  Google Scholar 

  • Li W, Zheng DH, Van K, Lee SH (2008b) QTL mapping for major agronomic traits across two years in soybean (Glycine max L. Merr.). J Crop Sci Biotechnol 11:171–190

    Google Scholar 

  • Li Y, Zhao S, Ma J, Li D, Yan L, Li J, Qi X, Guo X, Zhang L, He W, Chang R, Liang Q, Guo Y, Ye C, Wang X, Tao Y, Guan R, Wang J, Liu Y, Jin L, Zhang X, Liu Z, Zhang L, Chen J, Wang K, Nielsen R, Li R, Chen P, Li W, Reif JC, Purugganan M, Wang J, Zhang M, Wang J, Qiu L (2013) Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genomics 14:579

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu W, Kim M, Van K, Lee Y, Li H, Liu X, Lee S (2011) QTL identification of yield-related traits and their association with flowering and maturity in soybean. J Crop Sci Biotechnol 14:65–70

    Article  Google Scholar 

  • Liu Y, Li Y, Reif JC, Mette MF, Liu Z, Liu B, Zhang S, Yan L, Chang R, Qiu L (2013) Identification of quantitative trait loci underlying plant height and seed weight in soybean. Plant Genome 6. doi:10.3835/plantgenome2013.03.0006

  • Mansur LM, Orf JH, Chase K, Jarvik T, Cregan PB, Lark KG (1996) Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci 36:1327–1336

    Article  CAS  Google Scholar 

  • Nguyen VT, Vuong TD, VanToai T, Lee JD, Wu X, Mian MAR, Dorrance AE, Shannon JG, Nguyen HT (2012) Mapping of quantitative trait loci associated with resistance to Phytophthora sojae and flooding tolerance in soybean. Crop Sci 52:2481–2493

    Article  CAS  Google Scholar 

  • Nyquist WE, Barker RJ (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, Lark KG (1999) Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci 39:1642–1651

    Article  Google Scholar 

  • Panthee DR, Pantalone VR, Saxton AM, West DR, Sams CE (2007) Quantitative trait loci for agronomic traits in soybean. Plant Breed 126:51–57

    Article  CAS  Google Scholar 

  • Reinprecht Y, Poysa VW, Yu K, Rajcan I, Ablett GR, Pauls P (2006) Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome 49:1510–1527

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS ONE 8:e54985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2004) MapQTL 5, Software for the mapping of quantitative trait loci in experimental population. B. V. Kyazma, Wageningen, Netherlands

  • Van Ooijen JW (2006) JoinMap 4. software for the calculation of genetic linkage maps in experimental populations. B. V. Kyazma, Wageningen, Netherlands

  • Wilson RF (2004) Seed composition. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses. ASA-CSSA-SSSA, Madison, pp 621–677

    Google Scholar 

  • Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Tim Mendiola, Keith Freewalt, and Ronald Fioritto for their technical help in this study. We also thank members of the Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD for development and distribution of the Universal Soy Linkage Panel (USLP 1.0) of 1,536 SNP markers used in this study. This study was supported by UDSA-ARS, Ohio State University/Ohio Agricultural Research and Development Center and a Grant from the Ohio Soybean Council.

Disclaimer

Trade and manufacturers' names are necessary to report factually on available data, however, the USDA neither guarantees nor warrants the standard of the product and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rouf Mian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Jun, T.H., Michel, A.P. et al. SNP markers linked to QTL conditioning plant height, lodging, and maturity in soybean. Euphytica 203, 521–532 (2015). https://doi.org/10.1007/s10681-014-1252-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1252-8

Keywords

Navigation