Skip to main content
Log in

Genomic characterization of the Hordeum vulgare DEP1 (HvDEP1) gene and its diversity in a collection of barley accessions

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Grain yield potential in cereals results from the contributions of three main components: inflorescence number per plant, grain number per inflorescence and mean grain weight. In rice, the Dense and erect panicle (DEP1) gene affects three important quantitative traits of the inflorescence and DEP1 homologs have been reported in barley and wheat. In this work, we have performed a detailed characterization of the barley DEP1 (HvDEP1) gene. We obtained a full-length sequence of its transcript, examined its expression in various tissues, genetically mapped it to chromosome 5H and measured its nucleotide diversity in a collection of barley cultivars from Canada. This gene has an exceptionally long 5′ UTR (297 bp) that contains an upstream open reading frame (uORF) coding for a predicted peptide of 70 amino acids. A similarly long 5′ UTR containing a putative uORF was found in all six grass species that we examined. Although HvDEP1 transcripts could be detected in all tissues tested, it was highest in meristematic tissues. In a collection of 167 barley cultivars, a low level of polymorphism was observed (π = 0.001) and the 37 SNPs/indels detected, none of which result in changes in the amino acid sequence of the HvDEP1 protein, defined 8 haplotypes. Diversity was especially low among 83 six-row types, all but one of which carried the exact same haplotype. We suggest that HvDEP1 is involved in the control of cellular growth and differentiation, that the conserved uORF may play a role in its post-transcriptional regulation and that this gene has undergone a very different history of selection within the two-row and six-row Canadian elite germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aoki K, Yano K, Suzuki A, Kawamura S, Sakurai N, Suda K, Kurabayashi A, Suzuki T, Tsugane T, Watanabe M, Ooga K, Torii M, Narita T, Shin-i T, Kohara Y, Yamamoto N, Takahashi H, Watanabe Y, Egusa M, Kodama M, Ichinose Y, Kikuchi M, Fukushima S, Okabe A, Arie T, Sato Y, Yazawa K, Satoh S, Omura T, Ezura H, Shibata D (2010) Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genom 11:210–226. doi:10.1186/1471-2164-11-210

    Article  Google Scholar 

  • Barrett LW, Fletcher S, Wilton SD (2012) Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci 69:3613–3634. doi:10.1007/s00018-012-0990-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyeldieu J (1997) Blé tendre. Techniques agricoles, Editions Techniques—Techniques agricoles. Fascicule 2020

  • Calvo SE, Pagliarini DJ, Mootha VK, Weissman J (2009) Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci USA 106:7507–7512. doi:10.1073/pnas.0810916106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y (2012) Population-based resequencing analysis of wild and cultivated barley revealed weak domestication signal of selection and bottleneck in the Rrs2 scald resistance gene region. Genome 55:93–104. doi:10.1139/G11-082

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497. doi:10.1038/ng.352

    Article  CAS  PubMed  Google Scholar 

  • Jilal A, Grando S, Henry R, Lee L, Rice N, Hill H, Baum M, Ceccarelli S (2008) Genetic diversity of ICARDA’s worldwide barley landrace collection. Genet Resour Crop Evol 55:1221–1230. doi:10.1007/s10722-008-9322-1

    Article  CAS  Google Scholar 

  • Jones H, Leigh FJ, Mackay I, Bower MA, Smith LMJ, Charles MP, Jones G, Jones MK, Brown TA, Powell W (2008) Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the fertile crescent. Mol Biol Evol 25:2211–2219. doi:10.1093/molbev/msn167

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi R, Bailey-Serres J (2005) mRNA sequence features that contribute to translational regulation in Arabidopsis. Nucleic Acids Res 33:955–965. doi:10.1093/nar/gki240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilian B, Özkan H, Kohl J, von Haeseler A, Barale F, Deusch O, Brandolini A, Yucel C, Martin W, Salamini F (2006) Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Mol Genet Genomics 276:230–241. doi:10.1007/s00438-006-0136-6

    Article  CAS  PubMed  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He CF, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104:1424–1429. doi:10.1073/pnas.0608580104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Annals of Eugenics 12:172–175. doi:10.1111/j.1469-1809.1943.tb02321

    Article  Google Scholar 

  • Lamara M, Zhang LY, Marchand S, Tinker NA, Belzile F (2013) Comparative analysis of genetic diversity in Canadian barley assessed by SSR, DarT, and pedigree data. Genome 56(6):351–358. doi:10.1139/gen-2013-0048

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi:10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  • Morris DR, Geballe AP (2000) Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol 20:8635–8642. doi:10.1128/MCB.20.23.8635-8642.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillen K, Zacharias A, Léon J (2003). Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    Google Scholar 

  • Pourkheirandish M, Komatsuda T (2007) The importance of barley genetics and domestication in a global perspective. Ann Bot 100:999–1008. doi:10.1093/aob/mcm139

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell J, Dawson IK, Flavell AJ, Steffenson B, Weltzien E, Booth A, Ceccarelli S, Grando S, Waugh R (2011) Analysis of 1000 single nucleotide polymorphisms in geographically matched samples of landrace and wild barley indicates secondary contact and chromosome-level differences in diversity around domestication genes. New Phytol 191:564–578. doi:10.1111/j.1469-8137.2011.03704

    Article  PubMed  Google Scholar 

  • Sakamoto T, Matsuoka M (2008) Identifying and exploiting grain yield genes in rice. Curr Opin Plant Biol 11:209–214. doi:10.1016/j.pbi.2008.01.009

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Nankaku N, Takeda K (2009) A high density transcript linkage map of barley derived from a single population. Heredity 103:110–117. doi:10.1038/hdy.2009.57

    Article  CAS  PubMed  Google Scholar 

  • Soltner D (1998) Les grandes productions végétales : céréales, plantes sarclées, prairies. Sainte-Gemme-sur-Loire, Sciences et Techniques Agricoles

  • Taguchi-Shiobara F, Kawagoe Y, Kato H, Onodera H, Tagiri A, Hara N, Miyao A, Hirochika H, Kitano H, Yano M, Toki S (2011) A loss-of-function mutation of rice DENSE PANICLE 1 causes semi-dwarfness and slightly increased number of spikelets. Breed Sci 61:17–25. doi:10.1270/jsbbs.61.17

    Article  Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • The International Barley Genome Sequencing Consortium (IBSC) (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716. doi:10.1038/nature11543

    Google Scholar 

  • Tinker NA, Mather DE, Rossnagel BG, Kasha KJ, Kleinhofs A, Hayes PM, Falk DE, Ferguson T, Shugar LP, Legge WG, Irvine RB, Choo TM, Briggs KG, Ullrich SE, Franckowiak JD, Blake TK, Graf RJ, Dofing SM, Saghai Maroof MA, Scoles GF, Hoffman D, Dahleen LS, Kilian A, Chen F, Biyashev RM, Kudrna DA, Steffenson BJ (1996) Regions of the genome that affect agronomic performance in two-row barley. Crop Science 36:1053–1062

    Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276. doi:10.1016/0040-5809(75)90020-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S. Bélanger gratefully acknowledges undergraduate and graduate studentships from the National Sciences and Engineering Research Council of Canada. This work was also supported by a research grant from the Natural Sciences and Engineering Research Council of Canada to F. Belzile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Belzile.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 657 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bélanger, S., Gauthier, M., Jean, M. et al. Genomic characterization of the Hordeum vulgare DEP1 (HvDEP1) gene and its diversity in a collection of barley accessions. Euphytica 198, 29–41 (2014). https://doi.org/10.1007/s10681-014-1089-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1089-1

Keywords

Navigation