Skip to main content
Log in

QTL mapping for tolerance of anaerobic germination from IR64 and the aus landrace Nanhi using SNP genotyping

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Direct seeding is becoming more popular mainly due to its labor-saving nature. However, flooding during germination caused by unleveled fields and unpredicted heavy rain can prevent crop establishment. On the other hand, flooding just after sowing protects the seeds from rats and birds and is also a viable means of weed control. Thus, the development of varieties able to tolerate flooding during germination, referred to as anaerobic germination (AG), is essential. A study was conducted to identify QTLs associated with tolerance of flooding during germination from an F2:3 mapping population derived from the cross of IR64 and the tolerant aus landrace Nanhi. Phenotyping was performed by counting the rate of seedling survival of 300 lines under the stress. Selective genotyping was employed by genotyping the 48 most tolerant and 48 most susceptible lines using a 384-plex SNP Indica/Indica set on the Illumina BeadXpress Reader, resulting in 234 polymorphic markers for the study. A major QTL for AG derived from Nanhi, named qAG7, was detected on chromosome 7 with an LOD of 13.93 and 22.3 % of the phenotypic variance explained. A second QTL of smaller effect, qAG11, was also derived from Nanhi, while one QTL with an increased effect from IR64 was detected on chromosome 2 (qAG2.1). The QTLs detected in this study can be used to further elucidate the mechanisms underlying AG tolerance in rice, and can also be used in marker-assisted selection and QTL pyramiding to provide higher AG tolerance to enable improved crop establishment in direct-seeded systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Angaji SA, Septiningsih EM, Mackill DJ, Ismail AM (2010) QTLs associated with tolerance of flooding during germination in rice (Oryza sativa L.). Euphytica 172:159–168

    Article  Google Scholar 

  • Biswas JK, Yamauchi M (1997) Mechanism of seedling establishment of direct-seeded rice (Oryza sativa L.) under lowland conditions. Bot Bull Acad Sin 38:29–32

    Google Scholar 

  • Darvasi A, Soller M (1992) Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor Appl Genet 85:353–359

    PubMed  CAS  Google Scholar 

  • Ella ES, Setter TL (1999) Importance of seed carbohydrates in rice seedling establishment under anoxia. Acta Hortic 504:209–216

    CAS  Google Scholar 

  • Foolad MR, Subbiah P, Zhang L (2007) Common QTL affect the rate of tomato seed germination under different stress and nonstress conditions. Int J Plant Genomics. doi:10.1155/2007/97386

    Google Scholar 

  • Garavito A, Guyot R, Lozano J, Gavory F, Samain S et al (2010) A genetic model for the female sterility barrier between Asian and African cultivated rice species. Genetics 185:1425–1440

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guo L, Zhu L, Xu Y, Zeng D, Wu P, Qia Q (2004) QTL analysis of seed dormancy in rice (Oryza sativa L.). Euphytica 140:155–162

    Article  CAS  Google Scholar 

  • Han LZ, Zhang YY, Qiao YL, Cao GL, Zhang SY, Kim JH, Koh HJ (2006) Genetic and QTL analysis for low-temperature vigor of germination in rice. Acta Genet Sin 33:998–1006

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Takano T, Akita S (2000) Expression of α-expansin genes in young seedlings of rice. Planta 211:467–473

    Article  PubMed  CAS  Google Scholar 

  • Hwang YS, Thomas BR, Rodriguez RL (1999) Differential expression of rice α-amylase genes during seedling development under anoxia. Plant Mol Biol 40:911–920

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (IRGSP) (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Ismail AM, Ella ES, Vergara GV, Mackill DJ (2009) Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa L.). Ann Bot 103:197–209

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ismail AM, Johnson DE, Ella ES, Vergara GV, Baltazar AM (2012) Adaptation to flooding during emergence and seedling growth in rice and weeds, and implications for crop establishment. AoB Plants. doi:10.1093/aobpla/pls019

    PubMed Central  PubMed  Google Scholar 

  • Iwata N, Nagamatsu J, Omura T (1964) Abnormal segregation of waxy and apiculus coloration by a gametophyte gene belonging to the first linkage group in rice. Jap J Breed 14:33–39

    Article  Google Scholar 

  • Iwata N, Shinada H, Kiuchi H, Sato T, Fujino K (2010) Mapping of QTLs controlling seedling establishment using a direct seeding method in rice. Breed Sci 60:353–360

    Article  Google Scholar 

  • Jiang L, Hou M, Wang C, Wan J (2004) Quantitative trait loci and epistatic analysis of seed anoxia germinability in rice (Oryza sativa L.). Rice Sci 11:238–244

    Google Scholar 

  • Jiang L, Liu S, Hou M, Tang J, Chen L, Zhai H, Wan J (2006) Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crops Res 98:68–75

    Article  Google Scholar 

  • Lasanthi-Kudahettige R, Magneschi L, Loret E, Gonzali S, Licausi F, Novi G, Beretta O, Vituli F, Alpi A, Perata P (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144:218–231

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liedl B, Anderson NO (1993) Reproductive barriers: identification, uses and circumvention. Plant Breed Rev 11:11–154

    Google Scholar 

  • Lou Q, Chen L, Sun Z, Xing Y, Li J, Xu X et al (2007) A major QTL associated with cold tolerance at seedling stage in rice (Oryza sativa L.). Euphytica 158:87–94

    Article  CAS  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • McCouch SR, Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative (CGSNL) (2008) Gene nomenclature system for rice. Rice 1:72–84

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321–4325

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nagato Y, Yoshimura A, Conveners (1998) Report of the committee on gene symbolization, nomenclature and linkage groups. Rice Genetics Newsletter 15:34–74

    Google Scholar 

  • Pandey S, Velasco L (2002) Economics of direct seeding in Asia: patterns of adoption and research priorities. In: Pandey S, Mortimer M, Wade L, Tuong TP, Lopez K, Hardy B (eds) Direct seeding: research issues and opportunities. Proceedings of the International Workshop on Direct Seeding in Asian Rice Systems: Strategic Research Issues and Opportunities, 25–28 Jan 2000, Bangkok, Los Baños. International Rice Research Institute, pp 3–14

  • Redoña ED, Mackill DJ (1996) Genetic variation for seedling-vigor traits in rice. Crop Sci 36:285–290

    Article  Google Scholar 

  • Satler SO, Kende H (1985) Ethylene and the growth of rice seedlings. Plant Physiol 79:194–198

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Septiningsih EM, Sanchez DL, Singh N, Sendon PMD, Pamplona AM, Heuer S, Mackill DJ (2012) Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theor Appl Genet 124:867–874

    Article  PubMed  Google Scholar 

  • Septiningsih EM, Collard BCY, Heuer S, Bailey-Serres J, Ismail AM, Mackill DJ (2013a) Applying genomics tools for breeding submergence tolerance in rice. In: Varshney RK, Tuberosa R (eds) Translational genomics for crop breeding, vol 2., Improvement for abiotic stress, quality and yield improvementWiley-Blackwell, Hoboken, pp 9–30

    Chapter  Google Scholar 

  • Septiningsih EM, Ignacio JCI, Sendon PMD, Sanchez DL, Ismail AM, Mackill DJ (2013b) QTL mapping and confirmation for tolerance of anaerobic conditions during germination derived from the rice landrace Ma-Zhan Red. Theor Appl Genet 126:1357–1366

    Article  PubMed  Google Scholar 

  • Seshu DV, Krishnasamy V, Siddique SB (1988) Seed vigor in rice. Rice seed health. International Rice Research Institute, Manila, pp 315–329

    Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Hinga ME, Lobos KB, Xu Y, Martinez C, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components, and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493

    Article  PubMed  CAS  Google Scholar 

  • Thomson MJ, Zhao K, Wright M, McNally KL, Rey, Tung CW, Reynolds A, Scheffler B, Eizenga G, McClung A, Kim H, Ismail AM, de Ocampo M, Mojica C, Reveche MY, Dilla-Ermita CJ, Mauleon R, Leung H, Bustamante C, McCouch SR (2012) High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform. Mol Breed 29:875–886

    Article  CAS  Google Scholar 

  • Wang C, Zhu C, Zhai H, Wan J (2005) Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa L.). Genet Res 86:97–106

    Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2010) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm. Accessed 20 Oct 2013

  • Wright MH, Tung CW, Zhao K, Reynolds A, McCouch SR, Bustamante CD (2010) ALCHEMY: a reliable method for automated SNP genotype calling for small batch sizes and highly homozygous populations. Bioinformatics 26:2952–2960

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xian-Liang S, Xue-Zhen S, Tian-Zhen Z (2007) Segregation distortion and its effect on genetic mapping in plants. Chin J Agric Biotechnol 3:163–169. doi:10.1079/CJB2006110

    Article  Google Scholar 

  • Xie XB, Jin FX, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN (2008) Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet 116:613–622

    Article  PubMed  Google Scholar 

  • Xu S (2008) Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180:2201–2208

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253:535–545

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi M, Winn T (1996) Rice seed vigor and seedling establishment in anaerobic soil. Crop Sci 36:680–686

    Article  Google Scholar 

  • Yang J, Zhu J (2005) Methods for predicting superior genotypes under multiple environments based on QTL effects. Theor Appl Genet 110:1268–1274

    Article  PubMed  Google Scholar 

  • Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong G, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C (2002) A draft sequence of the rice genome. Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Deng Q-M, Zhang Q-J, Li JQ, Ye SP, Liang YS, Peng Y, Li P (2006) Analysis of segregation distortion of molecular markers in F2 population of rice. Acta Genet Sinica 33:449–457

    Google Scholar 

  • Zhou L, Wang J-K, Yi Q, Wang YZ, Zhu YG, Zhang ZH (2007) Quantitative trait loci for seedling vigor in rice under field conditions. Field Crops Res 100:294–301

    Article  Google Scholar 

Download references

Acknowledgments

We thank R. Garcia, J. Mendoza, J. A. Tarun, V. Bartolome and C. J. Dilla-Ermita for technical assistance, and B. Hardy for editing the manuscript. The work reported here was supported in part by a grant from the Bill & Melinda Gates Foundation (BMGF) through the project “Stress-Tolerant Rice for Africa and South Asia (STRASA)” and by the Global Rice Science Partnership (GRiSP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Endang M. Septiningsih.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 291 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltazar, M.D., Ignacio, J.C.I., Thomson, M.J. et al. QTL mapping for tolerance of anaerobic germination from IR64 and the aus landrace Nanhi using SNP genotyping. Euphytica 197, 251–260 (2014). https://doi.org/10.1007/s10681-014-1064-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1064-x

Keywords

Navigation