Skip to main content
Log in

Faba bean gene-pools development for low-input agriculture: understanding early stages of natural selection

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Six faba bean gene-pools were cultivated to develop locally adapted genetic material for low-input (LI) systems that take advantage of the observed benefit of LI agriculture in pollinator density and diversity. Bee pollinators intensify selection on floral traits important in attraction and mechanical-fit but may also select for traits that increase seed set through outcrossing and aided selfing. Our research is focused on examining the impact of natural selection in crop performance under different pollination management strategies, taking into account traits relevant for the inter-phase plant and pollinator. Architectural and floral patterns are the result of natural selection and they reflect local adaptation to factors of the environment and adaptations to differences in pollination management strategy. However, seed production patterns seem to be affected by natural selection in an inconsistent way. Principal Component models showed a large proportion of the temporal variation accounted by plant height and number of open flowers and by floral shape and sexual dimensions. Discriminant Analysis indicated that plant architecture and floral traits related to pollinators are also the result of selection for particular patterns in each pollination management strategy. Flowers with an increase in the zygomorphy were favored under the open-pollination. Our work confirms the need for careful management of plant-pollinator inter-phase in faba bean breeding for LI systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alghamdi S, Migdadi H, Ammar M et al (2012) Faba bean genomics: current status and future prospects. Euphytica 186:609–624

    Article  CAS  Google Scholar 

  • Allard RW (1988) Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild progenitors. J Hered 79:225–238

    CAS  PubMed  Google Scholar 

  • Allen-Wardell G, Bernhardt P, Bitner R et al (1998) The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv Biol 12:8–17

    Article  Google Scholar 

  • Andersson GKS, Rundlöf M, Smith HG (2012) Organic farming improves pollination success in strawberries. PLoS One 7(2):e31599. doi:10.1371/journal.pone.0031599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Balfourier F, Charmet G (1994) Methodological study of genetic-resources conservation of perennial ryegrass by pooling wild populations. Genet Sel Evol 26:S203–S218

    Article  Google Scholar 

  • Barrett SCH (1998) The evolution of mating strategies in flowering plants. Trends Plant Sci 3:335–341

    Article  Google Scholar 

  • Barrett SCH, Harder LD (1992) Floral variation in Eichhornia paniculata (Spreng.) Solms (Pontederiaceae) II. Effects of development and environment on the formation of selfing flowers. J Evol Biol 5:83–107

    Article  Google Scholar 

  • Bond DA (1987) Recent developments in breeding field beans (Vicia faba L.). Plant Breed 99:1–26

    Article  Google Scholar 

  • Bond DA, Kirby EJM (1999) Anthophora plumipes (Hymenoptera: Anthophoridae) as a pollinator of broad bean (Vicia faba major). J Apic Res 38:199–203

    Google Scholar 

  • Bond DA, Kirby EJM (2001) Further observations of Anthophora plumipes visiting autumn-sown broad bean (Vicia faba major) in the United Kingdom. J Apic Res 40:113–114

    Google Scholar 

  • Burkle LA, Alarcón R (2011) The future of plant-pollinator diversity: understanding interaction networks across time, space, and global change. Am J Bot 98:528–538. doi:10.3732/ajb.1000391

    Article  PubMed  Google Scholar 

  • Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 39:1611–1615. doi:10.1126/science

    Article  Google Scholar 

  • Carre S, Tasei JN, Badenhauser I et al (1998) Gene dispersal by bumblebees between two lines of faba bean. Crop Sci 38:322–325

    Article  Google Scholar 

  • Cresswell JE (1998) Stabilizing selection and the structural variability of flowers within species. Ann Bot 81:463–473

    Article  Google Scholar 

  • Dambroth M, El Bassam NE (1983) Low input varieties: definition, ecological requirements and selection. Plant Soil 72:365–377

    Article  CAS  Google Scholar 

  • Danquah EY, Barrett JA (2002a) Grain yield in composite cross five of barley: effects of natural selection. J Agric Sci 138:171–176

    Article  Google Scholar 

  • Danquah EY, Barrett JA (2002b) Evidence of natural selection for disease resistance in composite cross five (CCV) of barley. Genetica 115:195–203

    Article  CAS  PubMed  Google Scholar 

  • Dawson JC, Goldringer I (2012) Breeding for genetically diverse populations: variety mixtures and evolutionary populations. In: van Lammerts ET, Myers JR (eds) Organic crop breeding. Wiley, Oxford, pp 77–98

    Google Scholar 

  • Denison RF, Kiers ET, West SA (2003) Darwinian agriculture: when can humans find solutions beyond the reach of natural selection? Q Rev Biol 78:145–168

    Article  PubMed  Google Scholar 

  • Doring TF, Knapp S, Kovacs G et al (2011) Evolutionary plant breeding in cereals—into a new era. Sustainability 3:1944–1971

    Article  Google Scholar 

  • Dudash MR, Hassler C, Stevens PM et al (2011) Experimental floral and inflorescence trait manipulations affect pollinator preference and function in a hummingbird-pollinated plant. Am J Bot 98:275–282

    Article  PubMed  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Prentice Hall, London

    Google Scholar 

  • FAO (2008) A contribution to the international initiative for the conservation and sustainable use of pollinators: rapid assessment of pollinator’s status. Conference of the parties to the convention on biological diversity. FAO, Rome

    Google Scholar 

  • Fishman L, Willis JH (2008) Pollen limitation and natural selection on floral characters in the yellow monkeyflower, Mimulus guttatus. New Phytol 177:802–810

    Article  PubMed  Google Scholar 

  • Frusciante L, Monti LM (1980) Direct and indirect effects of insect pollination on the yield of field beans (Vicia faba L.). Z. Pflanzenzüchtg 84:323–328

    Google Scholar 

  • Gasim S, Link W (2007) Agronomic performance and the effect of self-fertilization on German winter faba beans. J Cent Eur Agric 8:121–128

    Google Scholar 

  • Ghaouti L, Vogt-Kaute W, Link W (2008) Development of locally-adapted faba bean cultivars for organic conditions in Germany through a participatory breeding approach. Euphytica 162:257–268

    Article  Google Scholar 

  • Goldringer I, Dawson J, Rey F et al (2010). Breeding for resilience: a strategy for organic and low-input farming systems? EUCARPIA 2nd Conference of the organic and low-input agriculture section

  • Greenleaf SS, Kremen C (2006) Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc Natl Acad Sci USA 103:13890–13895

    Article  CAS  PubMed  Google Scholar 

  • Harder LD, Johnson SD (2009) Darwin’s beautiful contrivances: evolutionary and functional evidence for floral adaptation. New Phytol 183:530–545

    Article  PubMed  Google Scholar 

  • Haussmann BIG, Rattunde HF, Weltzien-Rattunde E et al (2012) Breeding strategies for adaptation of pearl millet and sorghum to climate variability and change in west Africa. J Agron Crop Sci 198:327–339

    Article  Google Scholar 

  • Helenius J, Stoddard FL (2007) Agro-ecosystem services from increased usage and novel applications of legumes. Integrating legume biology for sustainable agriculture. Book of Abstracts. Sixth European Conference on Grain Legumes, Lisbon

  • Horneburg B, Becker HC (2008) Crop adaptation in on-farm management by natural and conscious selection: a case study with lentil. Crop Sci 48:203–212

    Article  Google Scholar 

  • Kambal AE, Bond DA, Toynbee-Clarke G (1976) A study on the pollination mechanism in field beans. J Agric Sci 87:519–526

    Article  Google Scholar 

  • Kist V, Bernardi Ogliari J, de Miranda Filho J et al (2010) Genetic potential of a maize population from Southern Brazil for the modified convergent–divergent selection scheme. Euphytica 176:25–36

    Article  Google Scholar 

  • Kobayashi K, Horisaki A, Niikura S et al (2006) Inter-accession variation in floral morphology in radish (Raphanus sativus L.). Euphytica 152:87–97

    Article  Google Scholar 

  • Kobayashi K, Tsukamoto S, Tanaka A et al (2010) Selective flower visitation behavior by pollinators in a radish F-1 seed production field. Breed Sci 60:203–211

    Article  Google Scholar 

  • Lande R (2009) Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J Evol Biol 22:1435–1446

    Article  PubMed  Google Scholar 

  • Lawes DA, Bond DA, Poulsen MH (1983) Classification, origin, breeding methods and objectives. In: Hebblethwaite PD (ed) The faba bean (Vicia faba L.): a basis for improvement. Butterworths, London, pp 23–62

    Google Scholar 

  • Lexer C, Randell RA, Rieseberg LH (2003) Experimental hybridization as a tool for studying selection in the wild. Ecology 84:1688–1699

    Article  Google Scholar 

  • Link W (1990) Autofertility and rate of cross-fertilization: crucial characters for breeding syntietic varieties in faba b. (Vicia faba L.). Theor Appl Genet 79:713–717

    Article  CAS  PubMed  Google Scholar 

  • Link W (2006). Methods and objectives in faba bean breeding. International Workshop on faba bean breeding and agronomy. In: Avila C, Cubero JI, Moreno MT (eds) International Workshop on Faba Bean Breeding and Agronomy. Junta de Andalucía, Córdoba, pp 35–40

  • Link W, Ghaouti L (2012) Faba bean: breeding for organic farming systems organic crop breeding. In: van Lammerts BE, Myers JR (eds) Organic crop breeding. Wiley, Oxford, pp 215–225

    Google Scholar 

  • Maad J, Alexandersson R (2004) Variable selection in Platanthera bifolia (Orchidaceae): phenotypic selection differed between sex functions in a drought year. J Evol Biol 17:642–650

    Article  CAS  PubMed  Google Scholar 

  • Maalouf F, Suso MJ, Moreno MT (1999) Choice of methods and indices for identifying the best parentals for synthetic varieties. Agronomie 19:705–712

    Article  Google Scholar 

  • Maalouf F, Suso MJ, Moreno MT (2002) Comparative performance of faba bean synthetics developed from different parental number. J Genet Breed 56:251–258

    Google Scholar 

  • Maalouf F, Ahmed KS, Munzir K et al (2008). The effect of mating system for developing combined resistance to chocolate spot and Ascochyta blight in faba bean. In: Prohens J, Badenes M L (eds) Modern Variety breeding for present and future needs. Proceedings of the 18th Eucarpia General Congress, Universidad Politécnica de Valencia, Valencia, pp 416

  • McLellan T, Endler JA (1998) The relative success of some methods for measuring and describing the shape of complex objects. Syst Biol 47:264–281

    Article  Google Scholar 

  • Metz PLJ, Buiel AAM, Van Norel A et al (1994) Genetic factors controlling outcrossing in faba bean (Vicia faba): effects of pollen donor and receptor genotypes and estimates of inter-receptor cross-fertilization. J Agric Sci 122:249–254

    Article  Google Scholar 

  • Miyake YC, Sakai S (2005) Effects of number of flowers per raceme and number of racemes per plant on bumblebee visits and female reproductive success in Salvia nipponica (Labiatae). Ecol Res 20:395–403

    Article  Google Scholar 

  • Morandin LA, Winston ML (2005) Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecol Appl 15:871–881

    Article  Google Scholar 

  • Murphy K, Lammer D, Lyon S et al (2005) Breeding for organic and low-input farming systems: an evolutionary–participatory breeding method for inbred cereal grains. Renew Agric Food Syst 20:48–55

    Article  Google Scholar 

  • Nadal S, Suso MJ, Moreno MT (2003) Management of Vicia faba genetic resources: changes associated to the selfing process in the major, equina and minor groups. Genet Resour Crop Evol 50:183–192

    Article  CAS  Google Scholar 

  • Owens SJ, Miller R (2009) Cross- and self-fertilization of plants—Darwin’s experiments and what we know now. Bot J Linn Soc 161:357–395

    Article  Google Scholar 

  • Palmer RG, Perez P, Ortiz-Perez E et al (2009) The role of crop-pollinator relationships in breeding for pollinator-friendly legumes: from a breeding perspective. Euphytica 170:35–52

    Article  Google Scholar 

  • Palmer RG, Gai J, Dalvi VA et al (2011) Male sterility and hybrid production technology. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI International, Oxford, pp 193–207

    Chapter  Google Scholar 

  • Palmer RG, Horner HT, Suso MJ et al (2012). Soybean heterosis: the first steps. International Conference on Utilization of heterosis in Crops. Abstracts. Xi′an, China

  • Pierre J, Suso MJ, Moreno MT et al (1999) Diversite et efficacite de l’entomofaune pollinisatrice (Hymenoptera: Apidae) de la feverole (Vicia faba L.) sur deux sites, en France et en Espagne. Ann Soc Entomol France 35:312–318

    Google Scholar 

  • Platenkamp GAJ, Shaw RG (1992) Environmental and genetic constraints on adaptive population differentiation in anthoxanthum odoratum. Evolution 46:341–352

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Poulsen MH (1975) Pollination, seed setting, cross-fertilization and inbreeding in Vicia faba L. Z. Pflanzenzüchtg 74:97–118

    Google Scholar 

  • Power EF, Stout JC (2011) Organic dairy farming: impacts on insect–flower interaction networks and pollination. J Appl Ecol 48:561–569

    Article  Google Scholar 

  • Rick CM (1988) Evolution of mating systems in cultivated plants. In: Gottlieb LD, Jain S (eds) Plant evolutionary biology. Chapman and Hall, London, pp 133–147

    Chapter  Google Scholar 

  • Sletvold N, Agren J (2010) Pollinator-mediated selection on floral display and spur length in the Orchid Gymnadenia conopsea. Int J Plant Sci 171:999–1009

    Article  Google Scholar 

  • Suso MJ, Maalouf F (2010) Direct and correlated responses to upward and downward selection for outcrossing in Vicia faba. Field Crops Res 116:116–126

    Article  Google Scholar 

  • Suso MJ, Pierre J, Moreno MT et al (2001) Variation in outcrossing levels in faba bean cultivars: role of ecological factors. J Agric Sci 136:399–405

    Article  Google Scholar 

  • Suso MJ, Harder LD, Moreno MT et al (2005) New strategies for increasing heterozygosity in crops: Vicia faba mating system as a study case. Euphytica 143:51–65

    Article  Google Scholar 

  • Syafaruddin HA, Niikura S et al (2006) Effect of floral morphology on pollination in Brassica rapa L. Euphytica 149:267–272

    Article  Google Scholar 

  • Terzopoulos PJ, Kaltsikes PJ, Bebeli PJ (2008) Determining the sources of heterogeneity in Greek faba bean local populations. Field Crops Res 105:124–130

    Article  Google Scholar 

  • UNEP (2010) Emerging issues: global honey bee colony disorder and other threats to insect pollinators. http://unep.org. Accessed Oct 29 2013

  • Vaissière BE, Freitas BM, Gemmill-Herren B (2011) Protocol to detect and assess pollination deficits in crops: a handbook for its use. FAO, Rome

    Google Scholar 

  • Vallejo-Marin M, Barrett SCH (2009) Modification of flower architecture during early stages in the evolution of self-fertilization. Ann Bot 103:951–962

    Article  PubMed  Google Scholar 

  • Van Oosterom EJ, Weltzien E, Yadav OP et al (2005) Grain yield components of pearl millet under optimum conditions can be used to identify germplasm with adaptation to arid zones. Field Crops Res 96:407–421

    Article  Google Scholar 

  • Westerkamp C, Weber A (1999) Keel flowers of the Polygalaceae and Fabaceae: a functional comparison. Bot J Linn Soc 129:207–221

    Article  Google Scholar 

  • Willmer P (2011) Floral design and function. In: Willmer P (ed) Pollination and floral ecology. Princeton University Press, Princeton, pp 11–54

    Google Scholar 

  • Wolfe MS (2000) Crop strength through diversity. Nature 406:681–682

    Article  CAS  PubMed  Google Scholar 

  • Wolfe MS, Baresel JP, Desclaux ID et al (2008) Developments in breeding cereals for organic agriculture. Euphytica 163:323–346

    Article  Google Scholar 

Download references

Acknowledgments

This study was financed by the EU in the FP7-KBBE-2009-3 project SOLIBAM (Strategies for Organic and Low-input Integrated Breeding and Management). Authors thankful to R. Palmer for the valuable suggestions and comments to improve the manuscript. Thanks also to Ignacio Solis, Francisco Ruiz and Clara Marquez, from Agrovegetal, for contributing to the SOLIBAM project particularly for specifically collaborating in the faba bean breeding. We also are grateful to J. L. Ubera for taking the faba bean pollinator picture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Suso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suso, M.J., del Río, R. Faba bean gene-pools development for low-input agriculture: understanding early stages of natural selection. Euphytica 196, 77–93 (2014). https://doi.org/10.1007/s10681-013-1015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-1015-y

Keywords

Navigation