Skip to main content
Log in

Comparison of organic acid levels and L-IdnDH expression in Chinese-type and European-type grapes

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Organic acids play a primary role in defining grape flavor and wine organoleptic properties. China-originated grape species contain high level acid, which limits to a certain extent, the marketing of fruits and their processing products. The objective of this study is to compare the changes of four organic acids along with grape berry development in cultivars native to China and Europe as well as some hybrids, and to preliminarily ascertain the reason for the high acid concentration in Chinese species. The results indicate that although the variation of titratable acidity during berry development strongly correlates with malic acid, the most significant difference amongst species at harvest lay in the concentration of tartaric acid. The Chinese-type species, V. quinquangularis, V. davidi and V. amurensis, contained higher levels of tartaric acid than European species. But this difference could be narrowed by interspecific hybridization. L-IdnDH, a key enzyme involved in tartaric acid synthesis, presented high homology in amino acid sequence for these species. Grape species with high level of tartaric acid did not have high transcript abundance of L-IdnDH (XM_002267626.2 and NM_001280954.1), but showed a slower decline in L-IdnDH amount during berry development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amerine M, Berg H, Kunkee R, Ough C, Singleton V (1982) The composition of grapes. In: Webb AD (ed) The technology of wine making. AVI, Westport, pp 77–139

    Google Scholar 

  • Boso Alonso S, Kassemeyer HH (2008) Different susceptibility of European grapevine cultivars for downy mildew. Vitis 47(1):39–49

    Google Scholar 

  • Boulton R, Singleton V, Bisson L, Kunkee R (1995) selection of state of ripeness for harvest and harvesting. In: Boulton R (ed) Principles and practices of wihemaking. International Thomson, Champman & Hall, pp 52–60

    Google Scholar 

  • DeBolt S, Cook DR, Ford CM (2006) l-Tartaric acid synthesis from vitamin C in higher plants. Proc Natl Acad Sci 103(14):5608–5613

    Article  CAS  PubMed  Google Scholar 

  • DeBolt S, Melino V, Ford CM (2007) Ascorbate as a biosynthetic precursor in plants. Ann Bot 99(1):3–8

    Article  CAS  PubMed  Google Scholar 

  • Fuleki T, Pelavo E, Palabay R (1993) Carboxylic acid composition of authentic varietal and commercial grape juices. J AOAC Int 76(3):591–600

    CAS  Google Scholar 

  • García Romero E, Sánchez Muñoz G, Martín Alvarez P, Cabezudo Ibáñez M (1993) Determination of organic acids in grape musts, wines and vinegars by high-performance liquid chromatography. J Chromatogr A 655(1):111–117

    Article  Google Scholar 

  • Iland P, Coombe B (1988) Malate, tartrate, potassium, and sodium in flesh and skin of Shiraz grapes during ripening: concentration and compartmentation. Am J Enol Viticult 39(1):71–76

    CAS  Google Scholar 

  • Lamikanra O, Inyang ID, Leong S (1995) Distribution and effect of grape maturity on organic acid content of red muscadine grapes. J Agric Food Chem 43(12):3026–3028

    Article  CAS  Google Scholar 

  • Li D, Wan Y, Wang Y, He P (2008) Relatedness of resistance to anthracnose and to white rot in Chinese wild grapes. Vitis 47(4):213–215

    CAS  Google Scholar 

  • Liang Z, Wu B, Fan P, Yang C, Duan W, Zheng X, Liu C, Li S (2008) Anthocyanin composition and content in grape berry skin in Vitis germplasm. Food Chem 111(4):837–844

    Article  CAS  Google Scholar 

  • Liang Z, Sang M, Ma A, Zhao S, Zhong G-y, Li S (2011) Inheritance of sugar and acid contents in the ripe berries of a tetraploid × diploid grape cross population. Euphytica 182(2):251–259

    Article  CAS  Google Scholar 

  • Liu HF, Wu BH, Fan PG, Xu HY, Li SH (2007) Inheritance of sugars and acids in berries of grape (Vitis vinifera L.). Euphytica 153(1–2):99–107

    CAS  Google Scholar 

  • Ma Y, Zhang Y, Shao H, Lu J (2010) Differential physio-biochemical responses to cold stress of cold-tolerant and non-tolerant grapes (Vitis L.) from China. J Agron Crop Sci 196(3):212–219

    Article  CAS  Google Scholar 

  • Malipiero U, Ruffner H, Rast D (1987) Ascorbic to tartaric acid conversion in grapevines. J Plant Physiol 129(1):33–40

    Article  CAS  Google Scholar 

  • Melino V, Soole K, Ford C (2009) Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC Plant Biol 9(1):145

    Article  PubMed Central  PubMed  Google Scholar 

  • Muñoz-Robredo P, Robledo P, Manríquez D, Molina R, Defilippi BG (2011) Characterization of sugars and organic acids in commercial varieties of table grapes. Chil J Agric Res 71(3):452–458

    Article  Google Scholar 

  • Ruffner HP (1982) Metabolism of tartaric and malic acids in Vitis: a review-part B. Vitis 21:346–358

    CAS  Google Scholar 

  • Ruffner HP, Hawker JS (1977) Control of glycolysis in ripening berries of Vitis vinifera. Phytochemistry 16(8):1171–1175

    Article  CAS  Google Scholar 

  • Ruffner HP, Kliewer WM (1975) Phosphoenolpyruvate carboxykinase activity in grape berries. Plant Physiol 56(1):67–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruffner HP, Hawker JS, Hale CR (1976) Temperature and enzymic control of malate metabolism in berries of Vitis vinifera. Phytochemistry 15(12):1877–1880

    Article  CAS  Google Scholar 

  • Sabir A, Kafkas E, Tangolar S (2010) Distribution of major sugars, acids, and total phenols in juice of five grapevine (Vitis spp.) cultivars at different stages of berry development. Span J Agric Res 8(2):425–433

    Article  Google Scholar 

  • Saito K, Morita SI, Kasai Z (1984) Synthesis of l-dextro-tartaric acid from 5-keto-d-gluconic acid in Pelargonium. Plant Cell Physiol 25:1223–1232

    CAS  Google Scholar 

  • Shiraishi M (1995) Proposed descriptors for organic acids to evaluate grape germplasm. Euphytica 81(1):13–20

    Article  Google Scholar 

  • Soyer Y, Koca N, Karadeniz F (2003) Organic acid profile of Turkish white grapes and grape juices. J Food Compost Anal 16(5):629–636

    Article  CAS  Google Scholar 

  • Staudt G, Kassemeyer H (1995) Evaluation of downy mildew resistance in various accessions of wild Vitis species. Vitis 34(4):225–228

    Google Scholar 

  • Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL (2009) Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 70(11–12):1329–1344

    Article  CAS  PubMed  Google Scholar 

  • Sweetman C, Wong DC, Ford CM, Drew DP (2012) Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics 13(1):691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Volschenk H, Van Vuuren H H, Viljoen-Bloom M (2006) Malic acid in wine: origin, function and metabolism during vinification. S Afr J Enol Vitic 27(2):123

    CAS  Google Scholar 

  • Wan Y, Schwaninger H, He P, Wang Y (2007) Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes. Vitis 46(3):132

    Google Scholar 

  • Wang Y, Liu Y, He P, Chen J, Lamikanra O, Lu J (1995) Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis 34(3):159–164

    Google Scholar 

  • Wen YQ, Li JM, Zhang ZZ, Zhang YF, Pan QH (2010) Antibody preparation, gene expression and subcellular localization of l-Idonate dehydrogenase in grape berry. Biosci Biotechnol Biochem 74(12):2413–2417

    Article  CAS  PubMed  Google Scholar 

  • Winkler AJ, Cook JA, Kliewer WM, Lider LA (1962) General Viticulture. Berkeley and Los Angeles, California

    Google Scholar 

  • Xu C, Zhang Y, Cao L, Lu J (2010) Phenolic compounds and antioxidant properties of different grape cultivars grown in China. Food Chem 119(4):1557–1565

    Article  CAS  Google Scholar 

  • Xu K, Wang A, Brown S (2012) Genetic characterization of the Ma locus with pH and titratable acidity in apple. Mol Breed 30(2):899–912

    Article  CAS  Google Scholar 

  • Zhu L, Zhang Y, Lu J (2012) Phenolic contents and compositions in skins of red wine grape cultivars among various genetic backgrounds and originations. Int J Mol Sci 13(3):3492–3510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Beijing Municipal Natural Science Foundation (No. 6092014 to Pan QH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-Hong Pan.

Additional information

Ya-Qin Wen and Jing Cui equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 264 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, YQ., Cui, J., Zhang, Y. et al. Comparison of organic acid levels and L-IdnDH expression in Chinese-type and European-type grapes. Euphytica 196, 63–76 (2014). https://doi.org/10.1007/s10681-013-1014-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-1014-z

Keywords

Navigation