Advertisement

Euphytica

, Volume 193, Issue 2, pp 277–291 | Cite as

Study of morpho-physiological, phenological and reproductive behaviour in protogynous lines of Indian mustard [Brassica juncea (L.)]

  • U. S. Chandrashekar
  • Malavika Dadlani
  • K. Vishwanath
  • S. K. Chakrabarty
  • C. T. Manjunath Prasad
Article

Abstract

Understanding the relationship between floral and reproductive traits are critical to understand the evolution of plant species in brassica and need for selecting lines as parental lines in hybrid seed prodcution. The protogyny nature of Brassica species are characterized based on the variations in floral morphology, protogyny interval, stigma receptivity, pollen biology, compatibility and seeds set. The variation in stigma morphology features (stigma exsertion prior to anthesis) and protogyny interval (ranged from 8 to 10 days) formed phenotypically distinct. Studies on stigma receptivity and pollen viability revealed significant variability and found to be at its peak up to 3 days after anthesis and reduced drastically thereafter. Compatibility crosses and post pollination events such as pollen deposition on the surface of the stigma and culminating with the entry of the pollen tube into the embryo sac, was rapid and completed within 2 days after pollination, whereas in in-compatible cross not even single pollen was germinated on stigmatic surface and consequently no pollen tube growth even after sixth day of pollination. In compatible crosses average seed set ranged from 3 to 8 seeds per pod from cross pollination and no seed set in self. The investigation revealed that variation exists for protogyny interval, stigma receptivity and compatibility in the protogynous lines of Indian mustard and this can be exploited for the production of hybrids without emasculation.

Keywords

Protogyny Stigma receptivity Self incompatibility Seeds set Pollen viability 

References

  1. Abrol DP (2007) Honeybees rapeseed pollinator plant interaction. Adv Bot Res 45:337–369CrossRefGoogle Scholar
  2. Andrews DJ, Rajewski JF, Kumar KA (1993) Pearl millet: new feed grain crop. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 198–208Google Scholar
  3. Anonymous Agriculture Statistics at a Glance (2010) Directotate of economis and statistics. Ministry of Agriculture, GOIGoogle Scholar
  4. Armbruster WS, Mulder CPH, Baldwin BG, Kalisz S, Wessa B, Nute H (2002) Comparative analysis of late floral development and mating-system evolution in tribe Collinsiae (Scrophulariaceae S.L.). Am J Bot 89:37–49PubMedCrossRefGoogle Scholar
  5. Barrett SCH (1988) The evolution, maintenance and loss of self-incompatibility systems. In: Lovett Doust J, Lovett Doust L (eds) Reproductive strategies of plants: patterns & strategies. Oxford University Press, New York, pp 98–124Google Scholar
  6. Bots M, Mariani M (2005) Pollen viability in the field. www.cogem.net/ContentFiles/Pollen_viability.pdf. Accessed 23 May 2008
  7. Buide ML, Guitian J (2002) Breeding system in the dichogamous hermaphrodite Silene acutifolia (Caryophyllaceae). Ann Bot 90:691–699PubMedCrossRefGoogle Scholar
  8. Chakrabarty SK, Chandrashekar US, Prasad M, Yadav JB (2011) Protogyny and Self-Incompatibility in Indian mustard (Brassica juncea (L.) Czern and Coss): a new tool for hybrid development. Indian J Genet Plant Breed 71(2):170–173Google Scholar
  9. Dafni A, Kevan PG, Husband BC (2005) Practical pollination biology. Enviroquest, Canada, p 590Google Scholar
  10. Dickinson H (1995) Dry stigmas, water and self-incompatibility in Brassica. Sex Plant Reprod 8:1–10CrossRefGoogle Scholar
  11. Downey RK, Rakow GFW (1987) Rapseed and mustard. In: Feyr WR (ed) Principles of culitivar development, vol 2. Macmillan Publishing Company, New York, pp 437–486Google Scholar
  12. Elle E, Hare JD (2002) Environmentally induced variation in floral traits affects the mating system in Datura wrightii. Funct Ecol 16:79–88CrossRefGoogle Scholar
  13. Erickson LR, Straus NA, Beversdorf WD (1983) Restriction patterns reveal origins of chloroplast genomes in Brassica amphidiploids. Theor Appl Genet 65:201–206CrossRefGoogle Scholar
  14. Fisher WD, Bashaw EC, Holt EC (1954) Evidence for apo- mixis in Pennisetum ciliare and Cenchrus setigerus. Agron J 46:401–404CrossRefGoogle Scholar
  15. Franklin FCH, Lawrence MJ, Franklin Tong VE (1995) Cell and molecular biology of Incompatibility in flowering plants. Int Rev Cytol 158:1–64CrossRefGoogle Scholar
  16. Free JB (1993) Insect pollination of crops. Academic Press, London, p 684Google Scholar
  17. Heslop-Harrison Y (2000) Control gates and micro-ecology: the pollen stigma interaction in perspective. Ann Bot 85(Suppl A):5–13CrossRefGoogle Scholar
  18. Heslop-Harrison J, Heslop-Harrison Y (1970) Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Biotech Histochem 45:115–120CrossRefGoogle Scholar
  19. Heslop-Harrison Y, Shivanna KR (1977) The receptive surface of the angiosperm stigma. Ann Bot 41:1233–1258Google Scholar
  20. Kalinganire A, Hardwood CE, Slee MU, Simons AJ (2000) Floral structure, stigma receptivity, and pollen viability in relation to protandry and self-incompatibility in silky oat (Grevillea robusta). Ann Bot 86:133–148CrossRefGoogle Scholar
  21. Kalisz SD, Vogler B, Fails M, Finer E, Shepard T, Herman Gozales R (1999) The mechanism of delayed selfing in Collinsia verna (Scrophulariaceae). Am J Bot 86:1239–1247PubMedCrossRefGoogle Scholar
  22. Kandasamy MK, Nasrallah JB, Nasrallah ME (1994) Pollen–pistil interactions and developmental regulation of pollen tube growth in Arabidopsis. Development 120:3405–3418Google Scholar
  23. Kobayashi K, Horisaki A, Niikura S, Ohsawa R (2004) Diallel analysis of floral characters in Raphanus sativus L. Breed Res 6(Suppl 2):169Google Scholar
  24. Laura AC, Daphne RG (2010) Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. J Expt Bot 10:20–25Google Scholar
  25. Luo RH, Dalvil VA, Lil YR, Saxena KB (2009) A study on stigma receptivity of cytoplasmic-nuclear male-sterile lines of pigeonpea, Cajanus cajan (L.) Millsp. J Plant Breed Crop Sci 1:254–257Google Scholar
  26. Lush Wm Opat As Nie F, Clarke Adrienne E (1997) An in vitro assay for assessing the effects of growth factors on Nicotiana alata pollen tubes. Sex Plant Reprod 10:351–357CrossRefGoogle Scholar
  27. Mankar KS, Yadav JB, Singhal NC, Prakash S, Gaur A (2007) Studies on stigma receptivity in Indian mustard. Seed Res 35:148–150Google Scholar
  28. Matton DP, Nass N, Clarke AE, Newbegin E (1994) Self–incompatibility: how plants avoid illegitimate offspring. Proc Natl Acad Sci USA 91:1992–1997PubMedCrossRefGoogle Scholar
  29. Motten AF, Stone JL (2000) Heritability of stigma position and the effect of stigma–anther separation on outcrossing in a predominantly self-fertilizing weed, Datura stramonium (Solanaceae). Am J Bot 87:339–347PubMedCrossRefGoogle Scholar
  30. Mussury RM, Fernandes W (2000) Studies of the floral biolgy and reproductive system of Brassica napus L. (Cruciferae). Braz Arch Biol Technol 43:111–117CrossRefGoogle Scholar
  31. Namai H Ohsawa R Ushita N (1992) Independent evolution of automatic self-pollination ability and self-fertility in Raphanus sativus L. and Brassica juncea (L.) Czern. et Coss.: the pathway from allogamous plant to autogamous plant. In: Proc XI int. symp embryology and seed reproduction, pp 387–388Google Scholar
  32. Nasrallah JB, Kao TH, Goldberg ML, Nasrallah ME (1985) A cDNA clone encoding an S-locus-specific glycoprotein from Brassica oleracea. Nature 318:263–267CrossRefGoogle Scholar
  33. Palmer JD, Shields CR, Cohen DB, Orton TJ (1983) Chloroplast DNA evolution and the origin of amphidiploid Brassica species. Theor Appl Genet 65:181–189CrossRefGoogle Scholar
  34. Rai B (1991) Seed Production In: Chopra, VL and S Prakash (eds) Oilseed Brassica in Indian Agriculture, (xiii) Har Anand Publications; Vikas Publishing House Pvt Ltd., New Delhi, pp 241–256Google Scholar
  35. Rosa AS, Blochtein B, Ferreira NR, Witter S (2010) Apis mellifera (Hymenoptera: Apidae) as a potential Brassica napus pollinator (cv. Hyola 432) Brassicaceae), in Southern Brazil. Braz J Biol 70:1075–1081PubMedCrossRefGoogle Scholar
  36. Sanchez AM, Bosch M, Bots M, Nieuwland J, Feron R, Mariani C (2004) Pistil factors controlling pollination. Plant Cell 16:98–106CrossRefGoogle Scholar
  37. Sanzol J, Rallo P, Herrero M (2003) Asynchronous development of stigmatic receptivity in the pear (Pyrus communis; Rosaceae) flower. Am J Bot 90:78–84PubMedCrossRefGoogle Scholar
  38. Shafer GS, Burson BL, Hussey MA (2000) Stigma receptivity and seed set in Protogynous bullelgrass. Crop Sci 40:391–397CrossRefGoogle Scholar
  39. Silva NF, Chritie SL, Sulaman W, Nazrian KAP, Burnett LA, Arnoldo MA, Rothstein SJ, Goring DR (2001) Expression of the S receptor kinase in self–incompatibility Brassica nupus cv Westar leads to the allele–specific rejection of self–incompatible Brassica napus pollen. Mol Genet Genom 265:552–559CrossRefGoogle Scholar
  40. Singh DP (1958) Rape and mustard. The Indian Central Oilseed Committee, Hyderabad, pp 14–22Google Scholar
  41. Singh VB Singh K (2008) Spices. New Age International (P) Limited Publisers, New Delhi. pp 206–214Google Scholar
  42. Somers GF, Grant D (1981) Influence of seed source upon phenology of flowering of Spartina alterniflora Loisel and the likelihood of cross pollination. Am J Bot 68:6–9CrossRefGoogle Scholar
  43. Stein JC, Howlett B, Boyes DC, Nasrallah ME, Nasrallah JB (1991) Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci USA 88:8816–8820PubMedCrossRefGoogle Scholar
  44. Syafaruddin Horisaki A, Niikura S, Yoshioka Y, Ohsawa R (2006) Effect of floral morphology on pollination in Brassica rapa L. Euphytica 149:267–272CrossRefGoogle Scholar
  45. Synder LA, Hernandez AR, Warmke HE (1955) The mechanism of apomixis in Pennisetum ciliare. Bot Gaz (Chicago) 116:209–221CrossRefGoogle Scholar
  46. Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K (2000) The S-receptor kinase determine self–incompatibility in Brassica stigma. Nature 403:913–916PubMedCrossRefGoogle Scholar
  47. Takayama S, Isogai A (2003) Molecular mechanism of self–recognition in Brassica self-incompatibility. J Expt Bot 54:149–156CrossRefGoogle Scholar
  48. Takayama S, Shiba H, Iwano M, Asano K, Hara M, Che FS, Watanabe M, Hinata K, Isogai A (2000) Isolation and characterization of pollen coat proteins of Brassica campestris that interact with S locus-related glycoprotein 1 involved in pollen–stigma adhesion. Proc Natl Acad Sci USA 97:3765–3770PubMedCrossRefGoogle Scholar
  49. Tupy J (1959) Callose formation in pollen tubes, and incompatibility. Biol Plant 1:192–198CrossRefGoogle Scholar
  50. Weinstein AI (1926) Cytological studies on Phaseolus vulgaris. Am J Bot 13:248–263CrossRefGoogle Scholar
  51. Williams IH (1980) Oilseed rape and beekeeping particularly in Britain. Bee World 61:141–153Google Scholar
  52. Yashiro K, Ohsawa R, Ushita N, Namai H (2001) Variations in reproductive systems within brown mustard (Brassica juncea) cultivars. Breed Res 3:21–30CrossRefGoogle Scholar
  53. Yi W, Law SE, Mccoy D, Wetzstein HY (2006) Stigma development and receptivity in almond (Prunus dulcis). Ann Bot 97:57–63PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • U. S. Chandrashekar
    • 1
  • Malavika Dadlani
    • 1
  • K. Vishwanath
    • 2
  • S. K. Chakrabarty
    • 1
  • C. T. Manjunath Prasad
    • 1
  1. 1.Division of Seed Science and TechnologyIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Department of Seed Science and TechnologyUniversity of Agricultural Sciences, GKVKBangaloreIndia

Personalised recommendations