, Volume 191, Issue 3, pp 365–373 | Cite as

Rubber tree early selection for yield stability in time and among locations

  • Lígia Regina Lima Gouvêa
  • Guilherme Augusto Peres Silva
  • Cecília Khusala Verardi
  • André Luis Bombonato de Oliveira
  • Elaine Cristine Piffer Gonçalves
  • Erivaldo José Scaloppi-Junior
  • Mário Luiz Teixeira de Moraes
  • Paulo de Souza Gonçalves


Rubber production in the rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss.) Muell. Arg.] can be expressed differently in different environments. Thus the objective of the present study was to select productive progenies, stable and responsive in time and among locations. Thirty progenies were assessed by early yield tests at three ages and in three locations. A randomized block design was used with three replications and ten plants per plot, in 3 × 3 m spacing. The procedure of the mixed linear Reml/Blup model—restricted maximum likelihood/best non-biased linear prediction was used in the genetic statistical analyses. In all the individual analyses, the values observed for the progeny average heritability (\( \hat{h}_{pa}^{2} \)) were greater than those of the additive effect based on single individuals (\( \hat{h}_{a}^{2} \)) and within plot additive (\( \hat{h}_{ad}^{2} \)). In the joint analyses in time, there was genotype × test interaction in the three locations. When 20 % of the best progenies were selected the predicted genetic gains were: Colina GG = 24.63 %, Selvíria GG = 13.63 %, and Votuporanga GG = 25.39 %. Two progenies were among the best in the analyses in the time and between locations. In the joint analysis among locations there was only genotype × location interaction in the first early test. In this test, selecting 20 %, the general predicted genetic gain was GG = 25.10 %. Identifying progenies with high and stable yield over time and among locations contributes to the efficiency of the genetic breeding program. The relative performance of the progenies varies depending of the age of early selection test.


Hevea brasiliensis Reml/Blup Repeated means Genetic parameters Early yield tests 


  1. Arantes FC, Gonçalves PS, Scaloppi-Junior EJ, Moraes, MLT, Resende MDV (2010) Genetic gain based on effective population size of rubber tree progenies. Pesq Agropec Bras 45:1419–1424 (in Portuguese, with abstract in English)Google Scholar
  2. Beilen JBB, Poirier Y (2007) Establishment of new crops for the production of natural rubber. Trends Biotechnol 25:522–529PubMedCrossRefGoogle Scholar
  3. Chandrasekhar TR, Marattukalam JG, Mercykutty VC, Priyadarshan PM (2007) Age of yield stabilization and its implications for optimizing selection and shortening breeding cycle in rubber (Hevea brasiliensis). Euphytica 156:67–75CrossRefGoogle Scholar
  4. Costa RB, Resende MDV, Araújo AJ, Gonçalves PS, Martins ALM (2000a) Genotype-environmental interaction and the number of test locations for the genetic improvement of rubber tree (Hevea spp.) in São Paulo state Brazil. Genet Mol Biol 23:179–187CrossRefGoogle Scholar
  5. Costa RB, Resende MDV, Araújo JA, Gonçalves PS (2000b) Selection and genetic gain in rubber tree (Hevea) populations using a mixed mating system. Genet Mol Biol 23:671–679CrossRefGoogle Scholar
  6. Costa RB, Resende MDV, Gonçalves PS, Arruda EJ, Oliveira LCS (2002) Prediction of genotype values for yield trait in rubber tree clone test trial using REML/BLUP procedure. Crop Breed Appl Biotechnol 2:579–586Google Scholar
  7. De Ketelaere B, Lammertyn J, Molenberghs G, Nicola IB, De Baerdemaeker J (2003) Statistical models for analyzing repeated quality measurements of horticultural products. model evaluations and practical example. Math Biosci 185:169–189PubMedCrossRefGoogle Scholar
  8. Dijkman MJ (1951) Hevea: thirty years of research in far east Florida. University of Miami, MiamiGoogle Scholar
  9. Falconer DS (1964) Introdução à genética quantitativa, Trad. SILVA, MA & SILVA JC UFV. Imprensa Universitária, ViçosaGoogle Scholar
  10. Ferreira RT, Viana AP, Barroso DG, Resende MDV, Amaral-Júnior AT (2012) Toona ciliata genotype selection with the use of individual BLUP with repeated measures. Sci Agric 69:210–216CrossRefGoogle Scholar
  11. Fogaça LA, Oliveira RA, Cuquel FL, Filho JCB, Vendrame WA, Tombolato AFC (2012) Heritability and genetic correlation in daylily selection. Euphytica 184:301–310CrossRefGoogle Scholar
  12. Furlani RCM, Moraes CMB, Moraes MLT, Paiva JR, Sebbenn (2005) AM mating system in a Hevea brasiliensis population by isozyme loci. Crop Breed Appl Biot 5:402–409Google Scholar
  13. Goncalves PS, Silva MA, Gouvêa LRL, Scaloppi-Junior EJ (2006) Genetic variability for girth growth and rubber yield characters in Hevea brasiliensis. Sci Agric 63:246–254CrossRefGoogle Scholar
  14. Gonçalves PS, Cardinal ABB, Costa RBC, Bortoletto N, Gouvêa LRL (2005) Genetic variability and selection for laticiferous system characters in Hevea brasiliensis. Genet Mol Biol 28:414–422CrossRefGoogle Scholar
  15. Gonçalves PS, Moraes MLT, Silva MA, Gouvêa LRL, Aguiar ATE, Costa RB (2009a) Prediction of Hevea progeny performance in the presence of genotype-environment interaction. Braz Arch Biol Tech 52:25–33Google Scholar
  16. Gonçalves PS, Aguiar ATE, Costa RBC, Gonçalves ECP, Scaloppi-Júnior EJ, Branco RF (2009b) Genetic variation and realized genetic gain from rubber tree improvement. Sci Agric 66:44–51CrossRefGoogle Scholar
  17. Lin CS, Binns MR (1991) Genetic properties of four types of stability parameter. Theor Appl Genet 82(505):509Google Scholar
  18. Littell RC, Henry PR, Ammerman CB (1998) Statistical analysis of repeated measures data using SAS procedures. J Anim Sci 76:1216–1231PubMedGoogle Scholar
  19. Priyadarshan PM, Gonçalves PS (2003) Hevea gene pool for breeding. Genet Resour Crop Ev 50:101–114CrossRefGoogle Scholar
  20. Resende MDV (2004) Métodos estatísticos ótimos na analise de experimentos e campo. Colombo: Embrapa FlorestasGoogle Scholar
  21. Resende MDV (2007a) Matemática e estatística na análise de experimentos e no melhoramento genético. Embrapa Florestas, ColomboGoogle Scholar
  22. Resende MDV (2007b) Selegen Reml/Blup: sistema estatístico e seleção genética computadorizada via modelos lineares mistos. Embrapa Florestas, ColomboGoogle Scholar
  23. Resende MDV; Duarte JB (2007) Precision and quality control in variety trials. Pesqui Agropecu Trop 37:182–194 (in Portuguese, with abstract in English)Google Scholar
  24. Resende MDV, Thompson R, Welham SJ (2006) Multivariate spatial statistical analysis of longitudinal data in perennial crops. Rev Mat Est 24:147–169Google Scholar
  25. Robertson A (1959) Experimental design in the evaluation of genetic parameters. Biometrics 15:219–226CrossRefGoogle Scholar
  26. Sedgley M, Attanayake DPSTG (1988) The breeding system of rubber (Hevea brasiliensis): an evaluation of controlled hand pollination methods. Euphytica 39:83–91CrossRefGoogle Scholar
  27. Silva GAP, Gouvêa LRL, Verardi CK, Resende MDV, Scaloppi-Junior EJ, Gonçalves PS (2012) Genetic parameters and correlation in early measurement cycles in rubber trees. Euphytica 189:343–350Google Scholar
  28. Vencovsky R (1987) Herança quantitativa. In: Paterniani E, Viegas GP (eds) Melhoramento e produção de milho. Fundação Cargill, CampinasGoogle Scholar
  29. Verardi CK, Resende MDV, Costa RB, Gonçalves PS (2009) Adaptability, stability and progenies selection of rubber. Pesq Agrop Bras 44: 1277–1282 (in Portuguese, with abstract in English)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Lígia Regina Lima Gouvêa
    • 1
  • Guilherme Augusto Peres Silva
    • 1
  • Cecília Khusala Verardi
    • 1
  • André Luis Bombonato de Oliveira
    • 1
  • Elaine Cristine Piffer Gonçalves
    • 2
  • Erivaldo José Scaloppi-Junior
    • 3
  • Mário Luiz Teixeira de Moraes
    • 4
  • Paulo de Souza Gonçalves
    • 1
  1. 1.Programa Seringueira, Instituto AgronômicoCampinasBrazil
  2. 2.Apta Regional Alta MogianaColinaBrazil
  3. 3.Apta Regional Noroeste PaulistaVotuporangaBrazil
  4. 4.Universidade Estadual Paulista ‘Júlio de Mesquita Filho’Ilha SolteiraBrazil

Personalised recommendations