Skip to main content
Log in

Mapping of QTLs in tomato line FLA456 associated with resistance to a virus causing tomato yellow leaf curl disease

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Tomato (yellow) leaf curl disease (TYLCD) is a serious threat to tomato production in the tropics and subtropics. The genetics of resistance to Tomato yellow leaf curl Thailand virus Taiwan strain (TYLCTHV-[TW]) in a highly resistant tomato line FLA456 was studied through quantitative trait loci (QTL) analysis. Four QTLs named qTy4.1, qTy6.1, qTy10.1 and qTy11.1 were detected on chromosomes 4, 6, 10, and 11, respectively, through evaluation of an F6 recombinant inbred line (RIL) population derived from a cross between FLA456 (resistant) and CLN1621L (susceptible). Gene action of all QTLs was recessive based on disease reaction of the F1. The markers SINAC1 and SLM4-34 flanked qTy4.1 on chromosome 4, and SLM11-12 and SLM11-17 defined qTy11.1, which co-located with the previously identified Ty-5 and Ty-2 loci, respectively. qTy6.1 was flanked by the markers SLM6-55 and TES-0014, and qTy10.1 by the markers SLM10-80-SLM10-46 on chromosomes 6 and 10. The LOD values of the putative QTLs ranged from 2.79 to 13.76. The phenotypic variance explained by each QTL ranged from 7.1 to 31.9 %. The four QTLs collectively contributed about 60.5 % of the phenotypic variation in resistance against TYLCTHV-[TW]. Group mean severity scores of those RILs possessing three or four qTy were generally lower than RIL groups with only one or no qTy. Given the diversity of begomoviruses that cause TYLCD across the regions, the new QTLs from FLA456 would be valuable in tomato breeding for developing varieties with durable resistance. Two QTL intervals (qTy4.1 and qTy10.1) contained virus resistance candidate genes such as CTV.22 and eukaryotic translation initiation factor 4E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrama HA, Scott JW (2006) Quantitative trait loci for Tomato yellow leaf curl virus and Tomato mottle virus resistance in tomato. J Amer Soc Hort Sci 131:267–272

    CAS  Google Scholar 

  • Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, Chen L, Lapidot M, Levin I (2009) Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet 119:519–530

    Article  PubMed  Google Scholar 

  • Banerjee MK, Kalloo G (1987) Inheritance of tomato leaf curl virus resistance in Lycopersicon hirsutum f. glabratum. Euphytica 36:581–584

    Article  Google Scholar 

  • Bian XY, Thomas MR, Rasheed MS, Saeed M, Hanson P, De Barro PJ, Rezaian MA (2007) A recessive allele (tgr-1) conditioning tomato resistance to geminivirus infection is associated with impaired viral movement. Phytopathology 97:930–937

    Article  PubMed  CAS  Google Scholar 

  • Chagué V, Mercier JC, Guenard M, de Courcel A, Vedel F (1997) Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor Appl Genet 95:671–677

    Article  Google Scholar 

  • Chowda Reddy RV, Colvin J, Muniyappa V, Seal S (2005) Diversity and distribution of begomoviruses infecting tomato in India. Arch Virol 150:845–867

    Article  Google Scholar 

  • Cohen S, Antignus Y (1994) Tomato yellow leaf curl virus, a whitefly-borne geminivirus of tomatoes. Adv Dis Vector Res 10:259–288

    Article  Google Scholar 

  • Cohen S, Nitzani FE (1966) Transmission and host range of the tomato yellow leaf curl virus. Phytopathology 56:1127–1131

    Google Scholar 

  • de la Peña RC, Kadirvel P, Venkatesan S, Kenyon L, Hughes J (2010) Integrated approaches to manage tomato yellow leaf curl viruses. In: Hou CT, Shaw JF (eds) Biocatalysis and Biomolecular Engineering. Wiley, Hoboken, pp 105–132

    Chapter  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  CAS  Google Scholar 

  • Fauquet C, Briddon R, Brown J, Moriones E, Stanley J, Zerbini M, Zhou X (2008) Geminivirus strain demarcation and nomenclature. Arch Virol 153:783–821

    Article  PubMed  CAS  Google Scholar 

  • Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209

    Article  CAS  Google Scholar 

  • Gandía M, Conesa A, Ancillo G, Gadea J, Forment J, Pallás V, Flores R, Duran-Vila N, Moreno P, Guerri J (2007) Transcriptional response of Citrus aurantifolia to infection by Citrus tristeza virus. Virology 367:298–306

    Article  PubMed  Google Scholar 

  • Geethanjali S, Chen KY, Pastrana DV, Wang JF (2010) Development and characterization of tomato SSR markers from genomic sequences of anchored BAC clones on chromosome 6. Euphytica 173:85–97

    Article  CAS  Google Scholar 

  • Geethanjali S, Kadirvel P, de la Peña RC, Sreenivasa Rao E, Wang JF (2011) Development of tomato SSR markers from anchored BAC clones of chromosome 12 and their application for genetic diversity analysis and linkage mapping. Euphytica 178:283–295

    Article  Google Scholar 

  • Green SK, Tsai WS, Shih SL, Rezaian MA, Duangsong U (2003) Molecular characterization of a new begomovirus associated with tomato yellow leaf curl and eggplant yellow mosaic diseases in Thailand. Plant Dis 87:446

    Article  Google Scholar 

  • Griffiths PD, Scott JW (2001) Inheritance and linkage of tomato mottle virus resistance genes derived from Lycopersicon chilense accession LA1932. J Amer Soc Hort Sci 126:462–467

    CAS  Google Scholar 

  • Hanson PM, Bernacchi D, Green S, Tansksley SD, Muniyappa V, Padmaja AS, Chen H, Kuo G, Fang D, Chen J (2000) Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J Amer Soc Hort Sci 125:15–20

    CAS  Google Scholar 

  • Hanson P, Green SK, Kuo G (2006) Ty-2 gene on chromosome 11 conditioning geminvirus resistance in tomato. Rept Tomato Genetics Coop 56:17–18

    Google Scholar 

  • Hutton SF, Scott JW, Schuster DJ (2012) Recessive resistance to Tomato yellow leaf curl virus from the tomato cultivar Tyking is located in the same region as Ty-5 on chromosome 4. HortScience 47:324–327

    Google Scholar 

  • Ji Y, Schuster DJ, Scott JW (2007a) Ty-3, a begomovirus resistance locus near the tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol Breed 20:271–284

    Article  CAS  Google Scholar 

  • Ji Y, Scott JW, Hanson P, Graham E, Maxwell DP (2007b) Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruses. In: Czosnek H (ed) Tomato yellow leaf curl virus disease: management, molecular biology, breeding for resistance. Kluwer, Dordrecht, pp 343–362

    Chapter  Google Scholar 

  • Ji Y, Salus MS, van Betteray B, Smeets J, Jensen KS, Martin CT, Mejia L, Scott JW, Havey MJ, Maxwell DP (2007c) Co-dominant SCAR markers for detection of the Ty-3 and Ty-3a loci from Solanum chilense at 25 cM of chromosome 6 of tomato. Rept Tomato Genetics Coop 57:25–28

    Google Scholar 

  • Ji Y, Scott JW, Maxwell DP, Schuster DJ (2008) Ty-4, a tomato yellow leaf curl virus resistance gene on chromosome 3 of tomato. Rept Tomato Genetics Coop 58:29–31

    Google Scholar 

  • Ji Y, Scott JW, Schuster DJ (2009) Towards fine mapping of the Tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. HortScience 44:614–618

    Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789

    Article  PubMed  CAS  Google Scholar 

  • Kalloo G, Banerjee MK (1990) Transfer of tomato leaf curl virus resistance from Lycopersicon hirsutum f. glabratum to L. esculentum. Plant Breed 105:156–159

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugenics 12:172–175

    Google Scholar 

  • Lapidot M, Friedmann M (2002) Breeding for resistance to whitefly-transmitted geminiviruses. Ann Appl Biol 140:109–127

    Article  Google Scholar 

  • Lapidot M, Polston JE (2006) Resistance to Tomato yellow leaf curl virus in tomato. In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plant viruses, Springer, Dordrecht, pp 503–520

    Chapter  Google Scholar 

  • Maruthi MN, Rekha AR, Cork A, Colvin J, Alam SN, Kader KA (2005) First Report of Tomato leaf curl New Delhi virus Infecting Tomato in Bangladesh. Plant Dis 89:1011.3

    Article  Google Scholar 

  • Moriones E, Navas-Castillo J (2000) Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res 71:123–134

    Article  PubMed  CAS  Google Scholar 

  • Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S (2011) Emerging virus diseases transmitted by whiteflies. Ann Rev Phytopathol 49:219–248

    Article  CAS  Google Scholar 

  • Nicaise V, German-Retana S, Sanjuán R, Dubrana M-P, Mazier M, Maisonneuve B, Candresse T, Caranta C, Le Gall O (2003) The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus lettuce mosaic virus. Plant Physiol 132:1272–1282

    Article  PubMed  CAS  Google Scholar 

  • Polston JE, Anderson PK (1997) The emergence of whitefly-transmitted geminiviruses in tomato in the Western Hemisphere. Plant Dis 81:1358–1369

    Article  Google Scholar 

  • Rochester DE, Kositratana W, Beachy RN (1990) Systemic movement and symptom production following agroinoculation with a single DNA of tomato yellow leaf curl geminivirus (Thailand). Virol 178:520–526

    Article  CAS  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. PNAS 97:11102–11107

    Article  PubMed  CAS  Google Scholar 

  • Saikia AK, Muniyappa V (1989) Epidemiology and control of tomato leaf curl virus in southern India. Tropical Agriculture 66:350–354

    Google Scholar 

  • Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S, Nakamura Y, Tabata S, Sasamoto S, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Isobe S (2010) An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor Appl Genet 121(4):731–739

    Article  PubMed  CAS  Google Scholar 

  • Sonenberg N, Morgan MA, Shatkin AJ, Merrick WC (1978) A polypeptide in eukaryotic initiation factors that cross links specifically to the 5′-terminal cap in mRNA. PNAS 75:4843–4847

    Article  PubMed  CAS  Google Scholar 

  • Stanley J, Bisaro DM, Briddon RW, Brown JK, Fauquet CM, Harrison BD, Rybicki EP, Stenger DC (2005) Geminiviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus Taxonomy: Eighth report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press pp, San Diego, pp 301–326

    Google Scholar 

  • Suliman-Pollatschek SS, Kashkush K, Shats H, Hillel J, Lavi U (2002) Generation and mapping of AFLPs, SSRs, and SNPs in Lycopersicon esculentum. Cell Mol Biol Lett 7:583–597

    PubMed  CAS  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Tsai WS, Shih SL, Kenyon L, Green SK, Jan F-J (2011) Temporal distribution and pathogenicity of the predominate tomato-infecting begomoviruses in Taiwan. Plant Pathol 60:787–799

    Article  CAS  Google Scholar 

  • van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0: Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, the Netherlands

  • Verlaan MG, Szinay D, Hutton SF, de Jong H, Kormelink R, Visser RGF, Scott JW, Bai Y (2011) Chromosomal rearrangements between tomato and Solanum chilense hamper mapping and breeding of the TYLCV resistance gene Ty-1. Plant J 68:1093–1103

    Article  PubMed  CAS  Google Scholar 

  • Vidavski F, Czosnek H, Gazit S, Levy D, Lapidot M (2008) Pyramiding of genes conferring resistance to Tomato yellow leaf curl virus from different wild tomato species. Plant Breed 127:625–631

    Article  Google Scholar 

  • Vidavsky F, Czosnek H (1998) Tomato breeding lines resistant and tolerant to Tomato yellow leaf curl virus issued from Lycopersicon hirsutum. Phytopathology 88:910–914

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Krishnaswamy S (2012) Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol Plant Pathol 13:795–803

    Article  PubMed  CAS  Google Scholar 

  • Yang Z-N, Ye X-R, Molina J, Roose ML, Mirkov TE (2003) Sequence analysis of a 282-kilobase region surrounding the Citrus tristeza virus resistance gene (Ctv) Locus in Poncirus trifoliata L. Raf. Plant Physiol 131:482–492

    Article  CAS  Google Scholar 

  • Zamir D, Michelson I, Zakay Y, Navot N, Zeidan N, Sarfatti M, Eshed Y, Harel E, Pleban T, van-Oss H, Kedar N, Rabinowitch HD, Czosnek H (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor Appl Genet 88:141–146

    Article  CAS  Google Scholar 

  • Zhou Y-C, Noussourou M, Kon T, Rojas MR, Jiang H, Chen L-F, Gamby K, Foster R, Gilbertson RL (2008) Evidence of local evolution of tomato-infecting begomovirus species in West Africa: characterization of tomato leaf curl Mali virus and tomato yellow crumple virus from Mali. Arch Virol 153:693–706

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Julie Chu for technical support, Fang-I Ho and Eguru Sreenivasa Rao for providing SSR primer pairs, Dolores Ledesma for statistical assistance, Maureen Mecozzi for editing the manuscript, and Professor John Scott for providing seed of FLA456. Financial support from the Federal Ministry for Economic Cooperation and Development, Germany, project number 03.7860.4-001.00 and the Asia and Pacific Seed Association (APSA-Bangkok) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hanson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadirvel, P., de la Peña, R., Schafleitner, R. et al. Mapping of QTLs in tomato line FLA456 associated with resistance to a virus causing tomato yellow leaf curl disease. Euphytica 190, 297–308 (2013). https://doi.org/10.1007/s10681-012-0848-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0848-0

Keywords

Navigation