Advertisement

Euphytica

, Volume 191, Issue 3, pp 333–353 | Cite as

Genetic mapping and QTL analysis for sugar yield-related traits in sugarcane

  • Ram Kushal SinghEmail author
  • Sujeet Pratap Singh
  • Dinesh Kumar Tiwari
  • Shraddha Srivastava
  • Surendra Bahadur Singh
  • Mukut Lal Sharma
  • Rakesh Singh
  • Trilochan Mohapatra
  • Nagendra Kumar Singh
Article

Abstract

Genetic improvement of sugar content in sugarcane would benefit from the availability of sufficient DNA markers and a genetic map. Genetic linkage maps were constructed to identify quantitative trait loci (QTLs) for seedling brix (SB), brix (B), sucrose percent in juice (SUC), stalk number (SN), stalk length (SL), stalk diameter (SD), internodes (INT), number of green leaves (NGL), at three crop cycles across seven environments in a segregating population with 207 individuals derived from a bi-parental cross of sugarcane elite cultivars. Linkage analysis led to the construction of eight linkage groups (LGs) for Co86011 and sixteen LGs for CoH70. The combined length of the two linkage maps was 2606.77 cM distributed over 24 LGs. 31 QTLs were identified: 2 for SB, 7 for B, 6 for SUC, 4 for SN, 1 for SL, 3 for SD, 6 for INT and 2 for NGL at LOD scores ranging from 2.69 to 4.75. 7 QTLs (22 %) had stable effect across crop year and locations. Markers from parents were found to be associated with both positive and negative effect on all of the traits analyzed. The most important QTLs intervals identified in this study using single-dose marker, were qB2, qSUC2, qINT2 and qB2, qSUC2, qSL2, qINT2 located between SSR markers UGSM31548 and UGSM31649. These QTLs could be put into use in marker assisted breeding.

Keywords

Sugarcane Simple sequence repeats Quantitative trait loci Linkage map 

Notes

Acknowledgments

The authors want to thank the anonymous reviewers for their valuable suggestions. We are also thankful to Department of Biotechnology (DBT), Government of India for funding this research project. We acknowledge the help of Mr. Sudhir Pratap Singh, Miss. Parul Singh, Pradeep Kumar and Miss. Nidhi Subhanand in field and laboratory work.

References

  1. Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110:789–801PubMedCrossRefGoogle Scholar
  2. Aitken KS, Jackson PA, McIntyre CL (2006) Quantitative trait loci identified for sugar related traits in sugarcane (Saccharum spp.) cultivar × Saccharum officinarum population. Theor Appl Genet 112:1306–1317PubMedCrossRefGoogle Scholar
  3. Aitken KS, Hermann S, Karno K, Bonnett GD, McIntyre LC, Jackson PA (2008) Genetic control of yield related stalk traits in sugarcane. Theor Appl Genet 117:1191–1203PubMedCrossRefGoogle Scholar
  4. Aljanabi SM, Honeycutt RJ, McClelland M, Sobral BWS (1993) A genetic linkage map of Saccharum spontaneum L. ‘SES 208’. Genetics 134:1249–1260Google Scholar
  5. Aljanabi SM, Parmessur Y, Kross H, Dhayan S, Saumtally S, Ramdoyal K, Autrey LJC, Dookun-Saumtally A (2007) Identification of a major quantitative trait locus (QTL) for yellow spot (Mycovellosiella koepkei) disease resistance in sugarcane. Mol Breed 19:1–14Google Scholar
  6. Alwala S, Collins A, Kimbeng J, Veremis C, Gravois KA (2008) Linkage mapping and genome analysis in a Saccharum interspecific cross using AFLP, SRAP and TRAP markers. Euphytica 164:37–51CrossRefGoogle Scholar
  7. Alwala S, Collins A, Kimbeng J, Veremis C, Gravois KA (2009) Identification of molecular markers associated with sugar-related traits in a Saccharum interspecific cross. Euphytica 167:127–142CrossRefGoogle Scholar
  8. Andru S, Pan YB, Thongthawee S, Burner DM, Kimbeng CA (2011) Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85–384’.I. Linkage mapping using AFLP, SSR, and TRAP markers. Theor Appl Genet 123:77–93PubMedCrossRefGoogle Scholar
  9. Arencibia A (1998) Gene transfer in sugarcane. In: Biotechnology of food crops in developing countries. Springer, New York, pp 79–104Google Scholar
  10. Asins MJ (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291CrossRefGoogle Scholar
  11. Beavis W (1998) QTL analyses: power, precision and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits.CRC Press, Boca RatonGoogle Scholar
  12. Chang KY, Lo HF, Lai CY, Yao PJ, Lin KH, Hwang SY (2009) Identification of quantitative trait loci associated with yield-related traits in sweet potato (Ipomoea batatas). Botanical Stud 50:43–55Google Scholar
  13. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  14. Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Saccharum spp) ESTs cross transferable to Erianthus and Sorghum. Plant Sci 160:1115–1123PubMedCrossRefGoogle Scholar
  15. Da Silva JA, Bressiani JA (2005) Sucrose synthase molecular marker associated with sugar content in elite sugarcane progeny. Genet Mol Bio l 28:294–298CrossRefGoogle Scholar
  16. Da Silva JAG, Sorrells ME, Burnquist W, Tanksley SD (1993) RFLP linkage map and genome analysis of Saccharum spontaneum. Genome 36:782–791PubMedCrossRefGoogle Scholar
  17. Da Silva J, Honeycutt RJ, Burnquist W, Al-Janabi SM, Sorrells ME, Tanksley SD, Sobral BWS (1995) Saccharum spontaneum L. ‘SES 208’ genetic linkage map combining RFLP- and PCR-based markers. Mol Breed 1:165–179CrossRefGoogle Scholar
  18. Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszimann JC, Hont AD (1996) A putative major gene for rust resistance linked with an RFLP marker in sugarcane cultivar R 570. Theor Appl Genet 92:1059–1064CrossRefGoogle Scholar
  19. Decroocq V, Fave M, Hagen L, Bordenhave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922PubMedGoogle Scholar
  20. Edme SJ, Miller JD, Glaz B, Tai PYP, Comstock JC (2005) Genetic contribution to yield gains in the Florida sugarcane industry across 33 years. Crop Sci. 45:92–97Google Scholar
  21. Edme SJ, Glynn NG, Comstock JC (2006) Genetic segregation of microsatellite markers in Saccharum officinarum and S. spontaneum. Heredity 97:366–375PubMedCrossRefGoogle Scholar
  22. Garcia AAF, Kido EA, Meza AN, Souza HMB, Pinto LR, Pastina MM, Leite CS, da Silva JAG, Ulian EC, Figueira A, Souza AP (2006) Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor Appl Genet 112:298–314PubMedCrossRefGoogle Scholar
  23. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  24. Gravois KA, Milligan SB (1992) Genetic relationship between fiber and sugarcane yield components. Crop Sci 32:62–67CrossRefGoogle Scholar
  25. Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploids interspecific hybrid. Genetics 142:987–1000PubMedGoogle Scholar
  26. Guimaraes CT, Honeycutt RJ, Sills GR, Sobral BWS (1999) Genetic maps of Saccharum officinarum L. and Saccharum robustum Brandes & Jew. Ex Grassl. Genet Mol Biol 22:125–132CrossRefGoogle Scholar
  27. Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97CrossRefGoogle Scholar
  28. Hoarau JY, Grivet L, Offmann B, Raboin LM, Diorflat JP, Payet J, Hellmann M, D’Hont A, Glaszmann JC (2002) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). II. Detection of QTLs for yield components. Theor Appl Genet 105:1027–1037PubMedCrossRefGoogle Scholar
  29. Hoisington D, Khairallah M, González-de-León D (1994) Laboratory protocols: CIMMYT applied molecular genetics laboratory, 2nd edn. CIMMYT, México DFGoogle Scholar
  30. Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crops Res 92:277–290CrossRefGoogle Scholar
  31. Jackson PA, Hogarth DM (1992) Genotype environment interactions in sugarcane I. Patterns of response across locations and crop-years in North Queensland. Aust J Agric Re 43:1447–1459CrossRefGoogle Scholar
  32. Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140(11):11–1127Google Scholar
  33. Kang MS, Miller JD, Tai PYP, Dean JL, Glaz B (1987) Implications of confounding genotype × year and genotype × crop effects in sugarcane. Field Crops Res 15:349–355CrossRefGoogle Scholar
  34. Kimbeng CA, Rattey AR, Hetherington M (2002) Interpretation and implications of genotype by environment interactions in advanced stage sugarcane selection trails in central Queensland. Aust J Agric Res 53:1035–1045CrossRefGoogle Scholar
  35. Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL (2008) Identification of QTL for sugar-related traits in a sweet x grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384Google Scholar
  36. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  37. Kriegner A, Cervantes JC, Burg K, Mwanga ROM, Zhang D (2003) A genetic linkage map of sweet potato [Ipomoea batatas (L.) Lam.] based on AFLP markers. Mol Breed 11:169–185CrossRefGoogle Scholar
  38. Lander ES, Botstein D (1994) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 36:705Google Scholar
  39. Lingle SE, Viator RP, Johnson RM, Tew TL, Boykin DL (2009) Recurrent selection for sucrose content has altered growth and sugar accumulation in sugarcane. Field Crop Res 113:306–311CrossRefGoogle Scholar
  40. Liu BH (1998) Statistical genomics. CRC Press, New York 611 ppGoogle Scholar
  41. McCouch SR, Chen X, Panaud O, Temnyk S, Xu Y (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Bio 35:89–99CrossRefGoogle Scholar
  42. Mester D, Robin Y, Minkov D, Nevo E, Korol A (2003) Construction large-scale genetic maps using an evolutionary strategy algorithm. Genetics 165:2269–2282PubMedGoogle Scholar
  43. Ming R, Liu SC, Lin YR, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of Saccharum and Sorghum chromosome: comparative organization of closely related diploid and polyploidy genome. Genetics 150:1663–1682PubMedGoogle Scholar
  44. Ming R, Liu SC, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genomic Res 11:2075–2084CrossRefGoogle Scholar
  45. Ming R, Wang YW, Draye X, Moore PH, Irvine JE, Paterson AH (2002) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345PubMedCrossRefGoogle Scholar
  46. Mohapatra T, Singh KS, Swain S, Sharma RK, Singh NK (2003) STMS-based DNA fingerprints of the new plant type wheat lines. Curr Sci 84:1125–1129Google Scholar
  47. Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182PubMedCrossRefGoogle Scholar
  48. Mudge J, Andersen WR, Kehrer RL, Fairbanks DJ (1996) A RAPD genetic map of Saccharum officinarum. Crop Sci 36:1362–1366CrossRefGoogle Scholar
  49. Oliveira KM, Pinto LR, Marconi TG, Margarido GRA, Pastina MM, Teixeira LHM, Figueira AM, Ulian EC, Garcia AAF, Souza AP (2007) Functional genetic linkage map on EST markers for a sugarcane (Saccharum spp.) commercial cross. Mol Breed 20:89–208CrossRefGoogle Scholar
  50. Parh DK, Jordan DR, Aitken EAB, Mace ES, Jun-ai P, McIntyre CL, Godwin ID (2008) QTL analysis of ergot resistance in sorghum. Theor Appl Genet 117:369–382PubMedCrossRefGoogle Scholar
  51. Parida SK, Kalia SK, Kaul S, Dalal V, Hemaprabh G, Selvi A, Pandit A, Singh A, Gaikwad K, Sharma TR, Srivastava PS, Singh NK, Mohapatra T (2009) Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor Appl Genet 118:327–338PubMedCrossRefGoogle Scholar
  52. Parida SK, Pandit A, Gaikwad K, Sharma TR, Srivastava PS, Singh NK, Mohapatra T (2010) Functionally relevant microsatellites in sugarcane unigenes. BMC Plant Biol 10:251PubMedCrossRefGoogle Scholar
  53. Pastina MM, Malosetti M, Gazaffi R, Mollinari M, Margarido GRA, Oliveira KM, Pinto LR, Souza AP, van Eeuwijk FA, Garcia AAF (2012) A mixed model QTL analysis for sugarcane multiple-harvest-location trial data. Theor Appl Genet 124:835–849PubMedCrossRefGoogle Scholar
  54. Paterson AH (1996) Making genetic maps. In: Paterson AH (ed) Genome mapping in plants. R. G. Landes Company, San Diego, pp 23–39Google Scholar
  55. Paterson AH (1998) Molecular dissection of complex traits. CRC Press, Boca RatonGoogle Scholar
  56. Pinto LR, Garcia AAF, Pastina MM, Teixeira LHM, Bressiani JA, Ulian EC, Bidoia MAP, Souza AP (2010) Analysis of genomic and functional RFLP derived markers associated with sucrose content, fiber and yield QTLs in a sugarcane (Saccharum spp.) commercial cross. Euphytica 172:313–327CrossRefGoogle Scholar
  57. Piperidis G, D’Hont A (2001) Chromosome composition analysis of various Saccharum interspecific hybrids by genomic in situ hybridisation (GISH). Int Soc Sugar Cane Technol Congress, vol 11, p 565Google Scholar
  58. Piperidis N, Jackson PA, Hont AD, Besse P, Hoarau JY, Courtois B, Aitken KS, McIntyre CL (2008) Comparative genetics in sugarcane enables structured map enhancement and validation of marker-trait associations. Mol Breed 21:233–247CrossRefGoogle Scholar
  59. Raboin LM, Oliveira KM, Lecunff L, Telismart H, Roques D, Butterfield M, Hoarau JY, D’Hont A (2006) Genetic mapping in the high polyploid sugarcane using a bi-parental progeny; identification of a gene controlling stalk colour and a new rust resistance gene. Theor Appl Genet 112:1382–1391PubMedCrossRefGoogle Scholar
  60. Reffay N, Jackson PA, Aitken KS, Hoarau JY, D’Hont A, Besse P, McIntyre CL (2005) Characterisation of genome regions incorporated from an important wild relative into Australian sugarcane. Mol Breed 15:367–381CrossRefGoogle Scholar
  61. Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL (2008) Identification of QTL for sugar-related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384Google Scholar
  62. Schön C, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498PubMedCrossRefGoogle Scholar
  63. Singh RK, Singh S (1994) Early evaluation of sucrose for varietal improvement in sugarcane. Sugar Cane 3:17–21Google Scholar
  64. Singh RK, Singh GP (1998) Effect of sampling time on efficacy of selection for quality traits in sugarcane. Sugar Cane 3:3–17Google Scholar
  65. Singh RK, Singh GP (2000) Early evaluation of sugarcane for quality improvement as an effective approach for varietal selection in subtropical climate. Indian J Agric Sci 70:8–12Google Scholar
  66. Singh RK, Singh RB, Singh SP, Sharma ML (2011) Identification and transferability of sugarcane microsatellite to other cereal genome. Euphytica 182:335–354CrossRefGoogle Scholar
  67. Smith AB, Stringer JK, Wei X, Cullis BR (2007) Varietal selection for perennial crops where data relate to multiple harvests from a series of field trials. Euphytica 157:253–266CrossRefGoogle Scholar
  68. Tiwari DK, Pandey P, Singh RK, Singh SP, Singh SB (2011) Genotype × environment interaction and stability analysis in elite clones of sugarcane (Saccharum officianarum L.). Int J Plant Breed Genet 5:93–99CrossRefGoogle Scholar
  69. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotech 23:48–55CrossRefGoogle Scholar
  70. Wang S, Basten C, Gaffney P, Zeng ZB (2004) Window QTL cartographer version 2.0. Bioinformatics Research Center, North Carolina State University, Raleigh, USGoogle Scholar
  71. Woram RA, McGowan C, Stout JA, Gharbi K, Ferguson MM, Hoyheim B, Davidson EA, Davidson WS, Rexraod C, Danzmann (2004) A genetic linkage map for Arctic char (Salvelinus alpinus): evidence for higher recombination rates and segregation distortion in hybrid versus pure strain mapping parents. Genome 47:304–315PubMedCrossRefGoogle Scholar
  72. Wu K, Burnquist W, Sorrels M, Tew T, Moore P, Tanksley S (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300CrossRefGoogle Scholar
  73. Wu R, Maa CX, Painter I, Zeng ZB (2002) Simultaneous maximum liklyhood estimation of linkage and linkage phases in out crossing species. Theor Popul Biol 61:349–363PubMedCrossRefGoogle Scholar
  74. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedGoogle Scholar
  75. Zhang L, Yang G, Liu P, Hong D, Li S, He Q (2011) Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet 122:21–31PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Ram Kushal Singh
    • 1
    Email author
  • Sujeet Pratap Singh
    • 1
  • Dinesh Kumar Tiwari
    • 1
  • Shraddha Srivastava
    • 1
  • Surendra Bahadur Singh
    • 1
  • Mukut Lal Sharma
    • 1
  • Rakesh Singh
    • 2
  • Trilochan Mohapatra
    • 3
  • Nagendra Kumar Singh
    • 3
  1. 1.Centre for Sugarcane Biotechnology, Sugarcane Research Institute, (UP Council of Sugarcane Research)ShahjahanpurIndia
  2. 2.National Research Centre for DNA Fingerprinting, NBPGRNew DelhiIndia
  3. 3.National Research Centre on Plant Biotechnology, IARINew DelhiIndia

Personalised recommendations