Skip to main content
Log in

Production of chromosome-arm substitution lines of wild emmer in common wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Absract

Wild emmer wheat, Triticum turgidum subsp. dicoccoides, (2n = 4x = 28; genome BBAA), the progenitor of domesticated wheat, is genetically very close to durum and common wheat. This wild taxon has many characteristics that would be valuable if transferred to domesticated wheat. An appropriate exploitation of the “wild” genome requires its dissection into segments and evaluation of the contribution of each segment separately to the performance of domesticated wheat. This work describes the production of a series of chromosome-arm substitution lines (CASLs) of wild emmer in the background of the Israeli common wheat cultivar Bethlehem (2n = 6x = 42; genome BBAADD). The identity of the “wild” arm in each CASL was confirmed through the use of RFLP and SSR markers that were polymorphic between the two taxa. The product of this work is a series of true-breeding agronomic lines the breeding value of which can be evaluated under field conditions in different geographic regions. The usefulness of CASLs in studying the improvement of qualitative and quantitative traits in wheat is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Anikster Y, Eshel A, Ezrati S, Horovitz A (1991) Patterns of phenotypic variation in wild tetraploid wheat at Ammiad. Isr J Bot 40:397–418

    Google Scholar 

  • Avivi L (1977) High grain protein content in wild wheat. Can J Genet Cytol 19:569–570

    Google Scholar 

  • Avivi L (1979a) Utilization of Triticum dicoccoides for the improvement of grain protein quantity and quality in cultivated wheats. Monogr Genet Agrar 4:27–38

    Google Scholar 

  • Avivi L (1979b) High grain protein content in wild tetraploid wheat Triticum dicoccoides Körn. In: Proceedings of the 5th international wheat genetics symposium, New Delhi, India, vol 1, pp 372–380

  • Avivi L, Levy AA, Feldman M (1983) Studies on high protein durum wheat derived from crosses with the wild tetraploid wheat Triticum turgidum var. dicoccoides. In: Sakamoto S (ed) Proceedings of the 6th international wheat genetics symposium, Kyoto, Japan, pp 199–204

  • Blanco A, Bellomo MP, Cenci A, De Govanni C, D’Ovidio R, Iacono E et al (1998) A genetic linkage map of durum wheat. Theor Appl Genet 97:721–728

    Article  CAS  Google Scholar 

  • Cantrell RG, Joppa LR (1991) Genetic analysis of quantitative traits in wild emmer (Triticum turgidum L. var. dicoccoides). Crop Sci 31:645–649

    Article  Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic map of wheat homoeologous group-7 chromosomes. Theor Appl Genet 78:495–504

    Article  CAS  Google Scholar 

  • Chen Z, Devey M, Tuleen NA, Hart GE (1994) Use of recombinant substitution lines in the construction of RFLP-based genetic maps of chromosomes 6A and 6B of tetraploid wheat (Triticum turgidum L.). Theor Appl Genet 89:703–712

    CAS  Google Scholar 

  • Chen QF, Yen C, Yang JL (1998) Chromosome location of the gene for brittle rachis in the Tibetan weedrace of common wheat. Genet Resour Crop Evol 45:407–410

    Article  Google Scholar 

  • Devey ME, Hart GE (1993) Chromosomal localization of intergenomic RFLP loci in hexaploid wheat. Genome 36:913–918

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Dubcovsky J, Dvorak J, Chinoy CN, Gale MD (1995) Structural evolution of wheat chromosome 4A, 5A and 7B and its impact on recombination. Theor Appl Genet 91:282–288

    Article  CAS  Google Scholar 

  • Dinoor A, Eshed N, Ecker R, Gerechter-Amitai Z, Solel Z, Manisterski J, Anikster Y (1991) Fungal diseases of wild tetraploid wheat in a natural stand in northern Israel. Isr J Bot 40:481–500

    Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  PubMed  CAS  Google Scholar 

  • Feldman M (1977) Historical aspects and significance of the discovery of wild wheats. Stadler Symp 9:121–146

    Google Scholar 

  • Feldman M (1988) Cytogenetic and molecular approaches to alien gene transfer in wheat. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetics symposium, Cambridge, England, July 1988, vol 1, pp 23–32

  • Feldman M, Millet E (1991) Utilization of wild tetraploid wheat, Triticum turgidum var dicoccoides, for the increase in yield and protein in cultivated tetraploid and hexaploid wheats. Meeting of the Cereal Section of EUCARPIA, Schwerin (Germany), June 24–27. Vortr Pflanzenzuchtg 20:14–21

    Google Scholar 

  • Feldman M, Millet E (1995) Methodologies for identification, allocation and transfer of quantitative genes from wild emmer into cultivated wheat. In: Li ZS, Xin ZY (eds) Proceedings of the 8th international wheat genetics symposium, Beijing, China, pp 19–27

  • Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am 244:102–112

    Article  Google Scholar 

  • Feldman M, Avivi L, Levy AA, Zaccai M, Avivi Y, Millet E (1990) High protein wheat. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 6: crops II. Springer, Berlin, pp 593–614

    Google Scholar 

  • Feldman M, Millet E, Abbo S (1994) Exploitation of wild emmer wheat to increase yield and protein content in durum and common wheat. In: Proceedings of the EUCARPIA meeting of the genetic resources section, March 15–18, 1994, Clermont-Ferrand, France

  • Felsenburg T, Levy AA, Galili G, Feldman M (1991) Polymorphism of high-molecular weight glutenins in wild tetraploid wheat: spatial and temporal variation in a native site. Isr J Bot 40:451–479

    CAS  Google Scholar 

  • Gale MD, Atkinson MD, Chinoy CN, Harcourt RL, Jia J, Li QY, Devos KM (1995) Genetic maps of hexaploid wheat. In: Li ZS, Xin ZY (eds) Proceedings of the 8th international wheat genetics symposium, Beijing China, 1993, pp 29–40

  • Galili G, Feldman M (1983) Genetic control of endosperm proteins in wheat 1. The use of high resolution one-dimensional gel electrophoresis for the allocation of genes coding for endosperm protein subunits in the common what cultivar Chinese Spring. Theor Appl Genet 64:97–101

    Article  CAS  Google Scholar 

  • Galili G, Levy AA, Avivi Y, Feldman M (1987) Genetic studies on storage proteins in wheat. Isr Agresearch A(2):87–99

    Google Scholar 

  • Gerechter-Amitai ZK, Grama A (1974) Inheritance of resistance to strip rust (Puccinia striiformis) in crosses between wild emmer (Triticum dicoccoides) and cultivated tetraploid and hexaploid wheats I. Triticum durum. Euphytica 23:387–392

    Article  Google Scholar 

  • Gerechter-Amitai ZK, Stubbs RW (1970) A valuable source of yellow rust resistance in Israeli populations of wild emmer, Triticum dicoccoides. Euphytica 19:12–21

    Article  Google Scholar 

  • Gerechter-Amitai ZK, van Shilfhout CH (1984) Resistance to powdery mildew in wild emmer (Triticum dicoccoides Kören). Euphytica 33:273–280

    Article  Google Scholar 

  • Harlan JR, Zohary D (1966) Distribution of wild wheats and barley. Science 153:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Hart GE (1994) RFLP maps of bread wheat. In: Phillips RL, Vasil IK (eds) DNA-based markers in plants. Kluwer Academic Publishers, Dordrecht, pp 327–358

    Chapter  Google Scholar 

  • Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glémin S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Millet E, Rong JK, Wendel JF, Anikster Y, Feldman M (1999) Restriction fragment length polymorphism in wild and cultivated tetraploid wheat. Isr J Plant Sci 47:213–224

    CAS  Google Scholar 

  • Joppa LR (1993) Chromosome engineering in tetraploid wheat. Crop Sci 33:908–913

    Article  Google Scholar 

  • Joppa LR, Cantrell RG (1990) Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci 30:1059–1064

    Article  CAS  Google Scholar 

  • Joppa LR, Hareland GA, Cantrell RG (1991) Quality characteristics of the Langdon durum-dicoccoides chromosome substitution lines. Crop Sci 31:1513–1517

    Article  Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheats: an introduction. Special report 353. College of Agriculture, Columbia, pp 1–142

    Google Scholar 

  • Krugman T, Levy O, Snape JW, Rubin B, Korol A, Nevo E (1997) Comparative RFLP mapping of the chlorotoluron resistance gene (Su1) in cultivated wheat (Triticum aestivum) and wild wheat (Triticum dicoccoides). Theor Appl Genet 94:46–51

    Article  PubMed  CAS  Google Scholar 

  • Langridge P, Chalmers K (1998) Techniques for marker development. In: Slinkard AE (ed) Proceedings of the international wheat genetics symposium, Saskatoon, Canada, vol 1, pp 29–40

  • Levy AA, Feldman M (1988) Ecogeographical distribution of HMW glutenin alleles in populations of the wild tetraploid wheat Triticum turgidum var. dicoccoides. Theor Appl Genet 75:651–658

    Article  CAS  Google Scholar 

  • Levy AA, Feldman M (1989a) Genetics of morphological traits in wild wheat, Triticum turgidum var. dicoccoides. Euphytica 40:275–281

    Google Scholar 

  • Levy AA, Feldman M (1989b) Location of genes for high grain protein percentage and other quantitative traits in wild wheat Triticum turgidum var. dicoccoides. Euphytica 41:113–122

    Article  Google Scholar 

  • Levy AA, Galili G, Feldman M (1988a) Polymorphism and genetic control of high molecular weight glutenin subunits in wild tetraploid wheat Triticum turgidum var. dicoccoides. Heredity 61:63–72

    Article  CAS  Google Scholar 

  • Levy AA, Zaccai M, Millet E, Feldman M (1988b) Utilization of wild emmer for the improvement of grain protein percentage of cultivated wheat. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetics symposium, Cambridge, pp 969–974

  • Liu YG, Tsunewaki K (1991) Restriction fragment length polymorphism (RFLP) analysis in wheat. II. Linkage maps of the RFLP sites in common wheat. Jpn J Genet 66:617–633

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Mori N, Tsunewaki K (1990) Restriction fragment length polymorphism (RFLP) analysis in wheat. I. Genomic DNA library construction and RFLP analysis in common wheat. Jpn J Genet 65:367–380

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat. In: 11th international wheat genetics symposium 24–29 August 2008, Brisbane, QLD, Australia. http://wheat.pw.usda.gov/GG2/index.shtml

  • Millet E, Rong JK, Feldman M (1998) Production of wild emmer recombinant substitution lines in a modern bread wheat cultivar and their use in wheat mapping. In: Slinkard AE (ed) Proceedings of the 9th international wheat genetics symposium, vol 1, pp 127–130

  • Moseman JG, Nevo E, El-Morshidy MA, Zohary D (1984) Resistance of Triticum dicoccoides to infection with Erysiphe graminis tritici. Euphytica 33:41–47

    Article  Google Scholar 

  • Moseman JG, Nevo E, Gerechter-Amitai ZK, El-Morshidy MA, Zohary D (1985) Resistance of Triticum dicoccoides collected in Israel to infection with Puccinia recondita tritici. Crop Sci 25:262–265

    Article  Google Scholar 

  • Nalam VJ, Vales MI, Watson CJW, Kianian SF, Riera-Lizarazu O (2006) Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum L.). Theor Appl Genet 112:373–381

    Article  PubMed  CAS  Google Scholar 

  • Naranjo T (1990) Chromosome structure of durum wheat. Theor Appl Genet 79:397–400

    Article  Google Scholar 

  • Naranjo T, Roca A, Goicoechea PG, Giraldez R (1988) Chromosome structure of common wheat: genome reassignment of chromosomes 4A and 4B. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetics symposium, Cambridge, pp 115–120

  • Nevo E, Beiles A (1989) Genetic diversity of wild emmer wheat in Israel and Turkey: structure, evolution and application in breeding. Theor Appl Genet 77:421–455

    Article  Google Scholar 

  • Nevo E, Golenberg EM, Beiles E, Brown AHD, Zohary D (1982) Genetic diversity and environmental associations of wild wheat, T. dicoccoides, in Israel. Theor Appl Genet 62:241–254

    Google Scholar 

  • Nevo E, Carver BF, Beiles A (1991) Photosynthetic performance in wild emmer wheat Triticum dicoccoides: ecological and genetic predictability. Theor Appl Genet 81:445–460

    Article  Google Scholar 

  • Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement: population genetics, genetic resources, and genome organization of wheat’s progenitor, Triticum dicoccoides. Springer, Berlin

    Google Scholar 

  • Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110:859–864

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rong JK, Millet E, Feldman M (1998) A powdery mildew resistance gene from wild emmer transferred into common wheat and tagged by molecular markers. In: Slinkard AE (ed) Proceedings of the 9th international wheat genetics symposium, vol 3, pp 148–150

  • Rong JK, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–126

    Article  CAS  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Mo Agric Exp Stn Res Bull 572:1–58

    Google Scholar 

  • Sears ER, Sears LMS (1979) The telocentric chromosomes of common wheat. In: Ramanujam S (ed) The fifth international wheat genetics symposium, New Delhi, India, pp 389–407

  • Siedler H, Messmer MM, Schachermayr GM, Winzeler H, Winzeler M, Keller B (1994) Genetic diversity in European wheat and spelt breeding material based on RFLP data. Theor Appl Genet 88:994–1003

    Article  Google Scholar 

  • Snape JW, Nevo E, Parker BB, Leckie D, Morgunov A (1991) Herbicide response polymorphisms in wild populations of emmer. Heredity 66:251–257

    Article  Google Scholar 

  • Sun GL, Fahima T, Korol AB, Turpeinen T, Grama A, Ronin YI, Nevo E (1997) Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 95:622–628

    Article  CAS  Google Scholar 

  • Van Dynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995) Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59

    Article  Google Scholar 

  • Watanabe N, Ikakata N (2000) The effects of homoeologous group 3 chromosomes on grain colour dependent seed dormancy and brittle rachis in tetraploid wheat. Euphytica 115:215–220

    Article  Google Scholar 

  • Watanabe N, Sugiyama K, Yamagishi Y, Sakata Y (2002) Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheats. Hereditas 137:180–185

    Article  Google Scholar 

  • Xie W, Nevo E (2008) Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica 164:603–614

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by United States–Israel Binational Agricultural Research and Development Fund (BARD, Grant no. IS-2578-95) and by The Franco-Israeli Research Cooperation (AFFIRST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Feldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millet, E., Rong, JK., Qualset, C.O. et al. Production of chromosome-arm substitution lines of wild emmer in common wheat. Euphytica 190, 1–17 (2013). https://doi.org/10.1007/s10681-012-0725-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0725-x

Keywords