Advertisement

Euphytica

, Volume 185, Issue 3, pp 465–479 | Cite as

GGE biplot analysis to evaluate genotype, environment and their interactions in sorghum multi-location data

  • Sujay RakshitEmail author
  • K. N. Ganapathy
  • S. S. Gomashe
  • A. Rathore
  • R. B. Ghorade
  • M. V. Nagesh Kumar
  • K. Ganesmurthy
  • S. K. Jain
  • M. Y. Kamtar
  • J. S. Sachan
  • S. S. Ambekar
  • B. R. Ranwa
  • D. G. Kanawade
  • M. Balusamy
  • D. Kadam
  • A. Sarkar
  • V. A. Tonapi
  • J. V. Patil
Article

Abstract

Sorghum [Sorghum bicolor (L.) Moench] is a very important crop in the arid and semi-arid tropics of India and African subcontinent. In the process of release of new cultivars using multi-location data major emphasis is being given on the superiority of the new cultivars over the ruling cultivars, while very less importance is being given on the genotype × environment interaction (GEI). In the present study, performance of ten Indian hybrids over 12 locations across the rainy seasons of 2008 and 2009 was investigated using GGE biplot analysis. Location attributed higher proportion of the variation in the data (59.3–89.9%), while genotype contributed only 3.9–16.8% of total variation. Genotype × location interaction contributed 5.8–25.7% of total variation. We could identify superior hybrids for grain yield, fodder yield and for harvest index using biplot graphical approach effectively. Majority of the testing locations were highly correlated. ‘Which-won-where’ study partitioned the testing locations into three mega-environments: first with eight locations with SPH 1606/1609 as the winning genotypes; second mega-environment encompassed three locations with SPH 1596 as the winning genotype, and last mega-environment represented by only one location with SPH 1603 as the winning genotype. This clearly indicates that though the testing is being conducted in many locations, similar conclusions can be drawn from one or two representatives of each mega-environment. We did not observe any correlation of these mega-environments to their geographical locations. Existence of extensive crossover GEI clearly suggests that efforts are necessary to identify location-specific genotypes over multi-year and -location data for release of hybrids and varieties rather focusing on overall performance of the entries.

Keywords

Sorghum bicolor Multi-location data GE interaction GGE biplot Stability Mega-environment 

Notes

Acknowledgment

The authors thank Dr. P. Rajendrakumar of Directorate of Sorghum Research for his valuable input in improving the discussion.

References

  1. Allard RW, Bradshaw AD (1964) Implication of genotype-environmental interaction in applied plant breeding. Crop Sci 5:503–506CrossRefGoogle Scholar
  2. Casanoves F, Macchiavelli R, Balzarini M (2005) Error variation in multi-environment peanut trials. Crop Sci 45:1927–1933CrossRefGoogle Scholar
  3. Crossa J (1990) Statistical analyses of multilocation trials. Adv Agron 44:55–85Google Scholar
  4. Dehghani H, Ebadi A, Yousefi A (2006) Biplot analysis of genotype by environment interaction for barley yield in Iran. Agron J 98:388–393CrossRefGoogle Scholar
  5. Dehghani H, Omidi H, Sabaghnia N (2008) Graphic analysis of trait relations of rapeseed using the biplot method. Agron J 100:1443–1449CrossRefGoogle Scholar
  6. DeLacy IH, Kaul S, Rana BS, Cooper M (2010a) Genotypic variation for grain and stover yield of dryland (rabi) sorghum in India 1. Magnitude of genotype × environment interactions. Field Crop Res 118:228–235CrossRefGoogle Scholar
  7. DeLacy IH, Kaul S, Rana BS, Cooper M (2010b) Genotypic variation for grain and stover yield of dryland (rabi) sorghum in India 2. A characterization of genotype × environment interactions. Field Crop Res 118:236–242CrossRefGoogle Scholar
  8. Dias CT, Dos S, Krzanowski WJ (2003) Model selection and cross validation in additive main effects and multiplicative interaction models. Crop Sci 43:865–873CrossRefGoogle Scholar
  9. Ejeta GJ, Knoll E (2007) Marker-assisted selection in sorghum pp. In: Vashney R, Tuberosa R (eds) Genomic assisted crop improvement: vol 2. Genomic applications in crops. Springer, Berlin, pp 187–205CrossRefGoogle Scholar
  10. Fan XM, Kang MS, Chen H, Zhang Y, Tan J, Xu C (2007) Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agron J 99:220–228CrossRefGoogle Scholar
  11. Gabriel KR (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika 58:453–467CrossRefGoogle Scholar
  12. Gauch HG (1992) AMMI analysis of yield trials. In: Kang MS, Gauch HG (eds) Genotype-by-environment interaction. CRC Press, Boca Raton, pp 1–40Google Scholar
  13. Gauch HG (2006) Statistical analysis of yield trials by AMMI and GGE. Crop Sci 46:1488–1500CrossRefGoogle Scholar
  14. Gauch HG, Zobel RW (1997) Identifying mega-environment and targeting genotypes. Crop Sci 37:381–385CrossRefGoogle Scholar
  15. Gauch HG, Piepho HP, Annicchiarico P (2008) Statistical analysis of yield trials by AMMI and GGE: further considerations. Crop Sci 48:866–889CrossRefGoogle Scholar
  16. Harris K, Subodhi PK, Borrell A, Jordon D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J (2006) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338PubMedCrossRefGoogle Scholar
  17. Kaya YM, Akcurra M, Taner S (2006) GGE-biplot analysis of multi-environment yield trials in bread wheat. Turk J Agric For 30:325–337Google Scholar
  18. Lin CS, Binns MR (1988) A method of analyzing cultivar × location × year experiments: a new stability parameter. Theor Appl Genet 76:425–430CrossRefGoogle Scholar
  19. Lin CS, Butler G (1988) A data-based approach for selecting location for regional trial. Can J Plant Sci 68:651–659CrossRefGoogle Scholar
  20. Ma BL, Yan W, Dwyer LM, Fregeau-Reid J, Voldeng HD, Dion Y, Nass H (2004) Graphic analysis of genotype, environment, nitrogen fertilizer, and their interactions on spring wheat yield. Agron J 96:389–416CrossRefGoogle Scholar
  21. Mohammadi R, Aghaee M, Haghparast R, Pourdad SS, Rostaii M, Ansari Y, Abdolahi A, Amri A (2009) Association among non-parametric measures of phenotypic stability in four annual crops. Middle East Russ J Plant Sci Biotech 3(Special Issue I):20–24Google Scholar
  22. Putto W, Patanothai A, Jogloy S, Hoogenboom (2008) Determination of mega-environments for peanut breeding using the CSM-CROPGRO-Peanut model. Crop Sci 48:973–982Google Scholar
  23. Rao PS, Reddy PS, Ratore A, Reddy BVS, Panwar S (2011) Application GGE biplot and AMMI model to evaluate sweet sorghum (Sorghum bicolor) hybrids for genotype × environment interaction and seasonal adaptation. Indian J Agric Sci 81:438–444Google Scholar
  24. Roozeboom KL, Schapugh T, Tuinstra MR, Vanderlip RL, Milliken GA (2008) Testing wheat in variable environments: genotype, environment, interaction effects, and grouping test locations. Crop Sci 48:317–330CrossRefGoogle Scholar
  25. Sabaghnia N, Dehghani H, Sabaghpour SH (2008) Graphic analysis of genotype by environment interaction for lentil yield in Iran. Agron J 100:760–764CrossRefGoogle Scholar
  26. Saeed M, Francis CA (1984) Association of weather variable with genotype × environment interactions in grain sorghum. Crop Sci 24:13–16CrossRefGoogle Scholar
  27. Samonte SOPB, Wilson LT, McClung AM, Medley JC (2005) Targeting Cultivars onto rice growing environments using AMMI and SREG GGE biplot analysis. Crop Sci 45:2414–2424CrossRefGoogle Scholar
  28. Scapim CA, Oliveira VR, Braccini AL, Cruz CD, Andrade CAB, Vidigal MCG (2000) Yield stability in maize (Zea mays L.) and correlations among the parameters of the Eberhart and Russell, Lin and Binns and Huehn models. Genet Mol Biol 23:387–393CrossRefGoogle Scholar
  29. Snedecor GW, Cochran WG (1980) Statistical methods, 7th edn. Iowa State University Press, AmesGoogle Scholar
  30. Wright AJ (1971) The analysis and prediction of some two factor interactions in grass breeding. J Agric Sci Camb 76:301–306CrossRefGoogle Scholar
  31. Yan W (2001) GGEbiplot–a Windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agron J 93:1111–1118CrossRefGoogle Scholar
  32. Yan W (2002) Singular value partitioning for biplot analysis of multi-environment trial data. Agron J 4:990–996CrossRefGoogle Scholar
  33. Yan W, Hunt LA (2002) Biplot analysis of diallel data. Crop Sci 42:21–30PubMedCrossRefGoogle Scholar
  34. Yan W, Kang MS (2003) GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca RatonGoogle Scholar
  35. Yan W, Rajcan I (2002) Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Sci 42:11–20PubMedCrossRefGoogle Scholar
  36. Yan W, Tinker NA (2006) Biplot analysis of multi-environment trial data: principles and applications. Can J Plant Sci 86:623–645CrossRefGoogle Scholar
  37. Yan W, Hunt LA, Sheng Q, Szlavnics Z (2000) Cultivar evaluation and mega-environment investigation based on GGE biplot. Crop Sci 40:597–605CrossRefGoogle Scholar
  38. Yan W, Kang MS, Ma B-L, Woods S, Cornelius PL (2007) GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci 47:643–653CrossRefGoogle Scholar
  39. Yan W, Fregeau-Reid J, Pageau D, Martin R, Mitchell-Fetch J, Etieenne M, Rowsell J, Scott P, Price M, de Hann B, Cummiskey A, Lajeunesse J, Durand J, Sparry E (2010) Identifying essential test location for oat breeding in eastern Canada. Crop Sci 50:504–515CrossRefGoogle Scholar
  40. Yang RC, Crossa J, Cornelius PL, Burgueno J (2009) Biplot analysis of genotype × environment interaction: proceed with caution. Crop Sci 49:1564–1576CrossRefGoogle Scholar
  41. Zobel RW, Wright MJ, Gauch HG (1988) Statistical analysis of a yield trial. Agron J 80:388–393CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sujay Rakshit
    • 1
    Email author
  • K. N. Ganapathy
    • 1
  • S. S. Gomashe
    • 1
  • A. Rathore
    • 2
  • R. B. Ghorade
    • 3
  • M. V. Nagesh Kumar
    • 4
  • K. Ganesmurthy
    • 5
  • S. K. Jain
    • 6
  • M. Y. Kamtar
    • 7
  • J. S. Sachan
    • 8
  • S. S. Ambekar
    • 9
  • B. R. Ranwa
    • 10
  • D. G. Kanawade
    • 11
  • M. Balusamy
    • 12
  • D. Kadam
    • 13
  • A. Sarkar
    • 14
  • V. A. Tonapi
    • 1
  • J. V. Patil
    • 1
  1. 1.Directorate of Sorghum ResearchHyderabadIndia
  2. 2.International Crops Research Institute for the Semi-Arid TropicsAndhra PradeshIndia
  3. 3.Dr. Panjabrao Deshmukh Krishi VidyapeethAkolaIndia
  4. 4.ANGRAU Regional Agricultural Research StationPalemIndia
  5. 5.Department of Genetics and Plant BreedingTamil Nadu Agricultural UniversityCoimbatoreIndia
  6. 6.Sorghum Research StationSardarkrushinagar Dantiwada Agricultural UniversityBanaskantha, DeesaIndia
  7. 7.Main Sorghum Research StationUniversity of Agricultural SciencesDharwadIndia
  8. 8.Crop Research Station (AICRP)CS Azad University of Agriculture and TechnologyMauranipur, JhansiIndia
  9. 9.Marathwada Agricultural UniversityParbhaniIndia
  10. 10.Maharana Pratap University of Agriculture and TechnologyUdaipurIndia
  11. 11.Agricultural Research Station (PDKV)BuldanaIndia
  12. 12.Agricultural Research Station-TNAUBhavanisagarIndia
  13. 13.Agricultural Research Station MPKVKaradIndia
  14. 14.National Academy of Agricultural Research ManagementHyderabadIndia

Personalised recommendations