Skip to main content
Log in

Combining ability for grain chemistry quality traits in a white oat diallelic cross

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

There has been a strong demand for oat genotypes that contain caryopsis with high chemical quality which can suit the different market niches. Therefore, the objectives of this study were to assess the general (GCA) and specific combining ability (SCA) of white oat cultivars through diallelic crosses providing information about the genetic effects on expression of grain chemical quality components. Also, it was aimed to estimate the heterosis on F1 and F2 generations and the vigor loss due to inbreeding. During 2008, 21 hybrid populations F1 and F2 were obtained from artificial crossing among seven Brazilian white oat cultivars, following the complete diallel design, without considering the reciprocals. These populations and their parents were evaluated in the 2009 season in the experimental field in Capão do Leão, RS, Brazil. The higher values of mean squares associated to GCA indicates a strong contribution of additive genetic effects to the expression of grain chemical components. The parents tested showed a tendency to develop progeny with negative heterosis regarding protein, lipid, β-glucan and soluble dietary fiber in the grain, and positive for the content of nitrogen-free extract, total and insoluble dietary fiber. IAC 7 features a potential parent for obtaining grains with high protein and dietary fiber content, and low caloric content, fit to human diet. Meanwhile, UPF 15 and FAPA Louise can represent donors of alleles to increase lipid contents, while FAPA Louise and URS Guapa can be used to raise the grain nitrogen-free extract contents of lines intended for animal feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Prot:

Protein content

Lip:

Lipid

β-glu:

Β-glucan

NFE:

Nitrogen-free extract

TDF:

Total dietary fiber

IDF:

Insoluble dietary fiber

SDF:

Soluble dietary fiber

SCA:

Specific combining ability

GCA:

General combining ability

H1 :

Heterosis

Id:

Inbreeding depression

LV:

Loss of vigor

References

  • AACC (American Association of Cereal Chemists) (1999) Approved methods, 9th edn. American Association of Cereal Chemists, Saint Paul

    Google Scholar 

  • Ahokas H, Manninen ML (2000) Introgressive hexaploid oats from the Avena abyssinica (♀) × A. sativa hybrid: performance, grain lipids and proteins. Euphytica 111:153–160. doi:10.1023/A:1003850015682

    Article  CAS  Google Scholar 

  • Allard RW (1999) Principles of plant breeding, 2nd edn. Wiley, New York

    Google Scholar 

  • Aman P, Graham H (1987) Analysis of total and insoluble mixed-linked (1 → 3), (1 → 4)-β-d-glucans in barley and oats. J Inst Food Chem 35:706–709. doi:10.1021/jf00077a016

    Google Scholar 

  • Anderson JW, Bridges SR (1993) Hipocholesterolemic effects of oat bran in humans. In: Wood PJ (ed) Oat bran. American Association of Cereal Chemists, St. Paul, pp 139–157

    Google Scholar 

  • Andon MB, Anderson JWA (2008) The oatmeal-cholesterol connection: 10 year later. AJLM 2:55–57. doi:10.1177/1559827607309130

    Google Scholar 

  • ANVISA—National Agency for Sanitary Surveillance (1999) Advisory technoscientific committees in functional foods and novel food. http://www.anvisa.gov.br/alimentos/comissoes/tecno_bk.htm#RESOLUÇÕES ANVS/MS. Accessed 1 Apr 2011

  • AOAC (Association of Official Analytical Chemistry) (1997) Official methods of analysis of the Association of Official Analytical Chemistry, 16th edn. AOAC, Washington

    Google Scholar 

  • Baker RJ, McKenzie RIH (1972) Heritability of oil content in oats. Crop Sci 12:201–202. doi:10.2135/cropsci1972.0011183X001200020015x

    Article  Google Scholar 

  • Barbosa Neto JF, Matiello RR, Carvalho FIF, Oliveira JMS, Pegoraro DG, Schneider F, Sordi MEB, Vacaro E (2000) Genetic progress in oat breeding in southern Brazil. Pesq Agropec Bras 35:1605–1612. doi:10.1590/S0100-204X2000000800013

    Article  Google Scholar 

  • Beber RC, Francisco A, Alves AC, De Sá RM, Ogliari P (2002) Chemical characterization of Brazilian oat genotypes. Acta Científica Venezolana 53:202–209

    PubMed  CAS  Google Scholar 

  • Bell S, Goldman VM, Bistrian BR, Arnold AH, Ostroff G, Forse RA (1999) Effect of β-glucan from oats and yeast on serum lipids. Crit Rev Food Sci Nutr 39:189–202

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Freeling M (1997) The unified grass genome: synergy in synteny. Genome Res 7:301–306. doi:10.1101/gr.7.4.301

    PubMed  CAS  Google Scholar 

  • Bertan I, Carvalho FIF, de Costa Oliveira A, Silva JAG, Benin G, Hartwig I, Schmidt DAM, Valério IP, Fonseca DR, Silveira G (2009) Effects of heterosis and endogamy on agronomic important traits in wheat. Rev Ceres 56:753–763

    Google Scholar 

  • Brazilian Oat Research Committee (2006) Technical indications for oat. Fundação Agrária de Pesquisa Agropecuária, Guarapuava

    Google Scholar 

  • Brown CM, Aryeetey AN, Dubey SN (1973) Inheritance and combining ability for oil content in oats (Avena sativa L.). Crop Sci 14:67–69. doi:10.2135/cropsci1974.0011183X001400010020x

    Article  Google Scholar 

  • Butt MS, Tahir-Nadeem M, Khan MKI, Shabir R, Butt MSA (2008) Oat: unique among the cereals. Eur J Nutr 47:68–79. doi:10.1007/s00394-008-0698-7

    Article  PubMed  CAS  Google Scholar 

  • Carvalho FIF, Lorenceti C, Marchioro VS, Silva SA (2008) Conduction of populations in plant breeding, 2nd edn. UFPEL, Pelotas

    Google Scholar 

  • Cervantes-Martinez CT, Frey KJ, White PJ, Wesenberg DM, Holland JB (2001) Selection for greater β-glucan content in oat grain. Crop Sci 41:1085–1091. doi:10.2135/cropsci2001.4141085x

    Article  CAS  Google Scholar 

  • Chawade A, Sikora P, Bräutigam M, Larsson M, Vivekanand V, Nakash MA, Chen T, Olsson O (2010) Development and characterization of an oat TILLING-population and identification of mutations in lignin and β-glucan biosynthesis genes. BMC Plant Biol 10:1–13. doi:10.1186/1471-2229-10-86

    Article  Google Scholar 

  • Chernyshova AA, White PJ, Scott MP, Jannink JL (2007) Selection for nutritional function and agronomic performance in oat. Crop Sci 47:2230–2239. doi:10.2135/cropsci2006.12.0759

    Article  Google Scholar 

  • Crestani M, Silveira SFS, Mezzalira I, Tessmann E, Ribeiro G, Silva JAG, Gutkoski LC, Carvalho FIF, de Costa Oliveira A (2009) Relation among the grain yield components, industrial yield components and grain chemical quality in white oat. In: Brazilian Oat Research Committee (ed) Experimental results of the XXIX Brazilian Oat Research Committee Meeting. UFRGS, Porto Alegre, pp 28–31

    Google Scholar 

  • Crestani M, Carvalho FIF, de Costa Oliveira A, Silva JAG, Gutkoski LC, Sartori JF, Barbieri RL, Baretta D (2010) β-glucan content in white oat cultivars grown in different environments. Pesq Agropec Bras 45:261–268. doi:10.1590/S0100-204X2010000300005

    Google Scholar 

  • Cruz CD (2001) Genes program—version Windows 2001.0.0. UFV, Viçosa

    Google Scholar 

  • Cruz CD, Vencovsky R (1989) Comparison of some methods of diallel analysis. Braz J Genet 12:425–438

    Google Scholar 

  • Cruz CD, Regazzi AJ, Carneiro PCS (2004) Biometric models applied to genetic improvement, 3rd edn. UFV, Viçosa

    Google Scholar 

  • De Sá RM, Francisco A, Soares FCT (1998) Oat (Avena sativa L.) β-glucan concentration in different processing stages. Ciênc Tecnol Aliment 18:425–427. doi:10.1590/S0101-20611998000400013

    Google Scholar 

  • De Sá RM, Francisco A, Ogliari PJ, Bertoldi FC (2000) Beta-glucan content variation in Brasilian oat cultivars. Ciênc Tecnol Aliment 20:99–102. doi:10.1590/S0101-20612000000100019

    Article  Google Scholar 

  • Doehlert DC, McMullen MS, Hammond JJ (2001) Genotypic and environmental effects on grain yield and quality of oat grown in North Dakota. Crop Sci 41:1066–1072. doi:10.2135/cropsci2001.4141066x

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longmans Green, Harlow

    Google Scholar 

  • FDA Food Labeling (1997) Health claims: oats and coronary disease. Fed Reg 62:3583–3601

    Google Scholar 

  • Federizzi LC, Milach SCK, Pacheco MT, Barbosa Neto JF, Sereno MJCM (2005) Melhoramento da aveia. In: Borém A (ed) Improvement of cultivated species, 2nd edn. UFV, Viçosa, pp 141–169

    Google Scholar 

  • Floss EL, Silveira AAE, Veras AL, Augustin L, Doro C, Schulz J, Veloso CB, Gutkoski LC (1998) Production and processing of oat. In: Fioreze I (ed) Polo scientific and technological development—nucleus of food. EDIUPF, Passo Fundo, pp 55–88

    Google Scholar 

  • Frey KJ, Holland JB (1999) Nine cycles of recurrent selection for increased groat-oil content in oat. Crop Sci 39:1636–1641. doi:10.2135/cropsci1999.3961636x

    Article  Google Scholar 

  • Griffing B (1956) Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci 9:463–493

    Google Scholar 

  • Gullord M (1980) Oil and protein content and ists relation to other characters in oats (Avena sp.). Acta Agric Scand 30:216–218. doi:10.1080/00015128009435269

    Article  CAS  Google Scholar 

  • Gutkoski LC, Trombetta C (1999) Evaluation of dietary fiber and beta-glucan levels in oat (avena sativa L.) cultivars. Ciênc Tecnol Aliment 19. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20611999000300016. Accessed 16 Aug 2011. doi: 10.1590/S0101-20611999000300015

  • Holland JB (1997) Oat improvement. In: Kang MS (ed) Crop improvement for the 21st century. Research Signpost, Trivandrum, pp 57–98

    Google Scholar 

  • Holthaus JF, Holland JB, White PJ, Frey KJ (1996) Inheritance of β-glucan content of oat grain. Crop Sci 36:567–572. doi:10.2135/cropsci1996.0011183X003600030006x

    Article  CAS  Google Scholar 

  • Humphreys DG, Mather DE (1996) Heritability of β-glucan, groat percentage and crown rust resistance in two oat crosses. Euphytica 91:359–364. doi:10.1007/BF00033098

    Article  Google Scholar 

  • ISI (Infrasoft International of NIRSystems) (1996) Routine operation and calibration development manual—version 4.0. Perstorp Analytical Company, Maryland

    Google Scholar 

  • Karow RS, Forsberg RA (1984) Oil composition in parental, F1, and F2 populations of two oat crosses1. Crop Sci 24:629–632. doi:10.2135/cropsci1984.0011183X002400040001x

    Article  Google Scholar 

  • Kianian SF, Egli MA, Phillips RL, Rines HW, Somers DA, Gengenbach BG, Webster FH, Livingston SM, Groh S, O’Donoughue LS, Sorrell ME, Wesenberg DM, Stuthman DD, Fulcher RG (1999) Association of a major groat oil content QTL and an acetyl-CoA carboxylase gene in oat. Theor Appl Genet 98:884–894. doi:10.1007/s001220051147

    Article  CAS  Google Scholar 

  • Kianian SF, Phillips RL, Rines HW, Fulcher RG, Webster FH, Stuthman DD (2000) Quantitative trait loci influencing β-glucan content in oat (Avena sativa, 2n = 6x = 42). Theor Appl Genet 101:1039–1048. doi:10.1007/s001220051578

    Article  CAS  Google Scholar 

  • Lim HS, White PJ, Frey KJ (1992) Genotypic effects on β-glucan content of oat lines grown in two consecutive years. Cereal Chem 69:262–265

    CAS  Google Scholar 

  • Lorencetti C, Carvalho FIF, Benin G, Marchioro VS, Oliveira AC, Silva JAG, Hartwig I, Schmidt DAM, Valério IP (2005) Combining ability and heterosis in diallelic oat crosses. Rev Bras Agrociência 11:143–148

    Google Scholar 

  • Loskutov IG (2000) Some quality groat characters in oat wild species. In: Cross RJ (ed) Proceedings of the sixth international oat conference, New Zealand, pp 248–253

  • Manthey FA, Hareland GA, Huseby DJ (1999) Soluble and insoluble dietary fiber content and composition in oat. Cereal Chem 76:417–420. doi:10.1094/CCHEM.1999.76.3.417

    Article  CAS  Google Scholar 

  • Mather K, Jinks JL (1982) Biometrical genetics. Chapman and Hall, London

    Google Scholar 

  • McDonald A, Shinnick F, Ink S (1992) Review of the effects of oats on human health. In: Barr AR (ed) The changing role of oats in human and animal nutrition. Proceedings of the Fourth International Oat Conference. Robee Bureau Services, Adelaide, pp 1–8

  • Orr W, Molnar SJ (2007) Development and mapping of PCR-based SCAR and CAPS markers linked to oil QTLs in oat. Crop Sci 47:848–852. doi:10.2135/cropsci2006.01.0053

    Article  CAS  Google Scholar 

  • Pedó I, Sgarbieri VC, Gutkoski LC (1999) Protein evaluation of four aot (Avena sativa L.) cultivars adapted for cultivation in the south of Brazil. Plant Foods Hum Nutr 53:297–304. doi:10.1023/A:1008032013635

    Article  PubMed  Google Scholar 

  • Peterson DM, Wesenberg DM, Burrup DE, Erickson CA (2005) Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Sci 45:1249–1255. doi:10.2135/cropsci2004.0063

    Article  Google Scholar 

  • Price PB, Parsons JG (1975) Lipids of seven cereal grains. J Am Oil Chem Soc 52:490–493. doi:10.1007/BF02640738

    Article  PubMed  CAS  Google Scholar 

  • Ramalho MAP, Santos JB, Zimmermann MJO (1993) Quantitative genetics in autogamous plants. UFG, Goiânia

    Google Scholar 

  • Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Oliveira JB, Coelho MR, Lumbreras JF, Cunha TJF (2006) Brazilian system of soil classification. Embrapa Solos, Rio de Janeiro

    Google Scholar 

  • Silva CFL, Milach SCK, Silva SDA, Federizzi LC, Montero CR, Fontaneli RS (2006) Oat fiber fractions and their application in breeding programs. Pesq Agropec Bras 41:975–980. doi:10.1590/S0100-204X2006000600011

    Article  Google Scholar 

  • Silva CFL, Milach SCK, Silva SDA, Montero CR (2008) Near infrared reflectance spectroscopy (NIRS) to assess protein and lipid contents in Avena sativa L. Crop Breed Appl Biotechnol 8:127–133

    Google Scholar 

  • Thro AM, Frey KJ (1985) Inheritance of groat-oil content and high-oil selection in oats (Avena sativa L.). Euphytica 34:251–263. doi:10.1007/BF00022917

    Article  Google Scholar 

  • Wood PJ (1993) Physicochemical characteristics and physiological properties of oat (1–3), (1–4)-β-d-Glucan. In: Wood PJ (ed) Oat bran. American Association of Cereal Chemists, St. Paul, pp 83–112

    Google Scholar 

  • Zhou M, Robards K, Glennie-Holmes M, Helliwell S (1999) Oat lipids. J Am Oil Chem Soc 76:159–169. doi:10.1007/s11746-999-0213-1

    Article  CAS  Google Scholar 

  • Zhu S, Rossnagel BG, Kaeppler HF (2004) Genetic analysis of quantitative trait loci for groat protein and oil content in oat. Crop Sci 44:254–260. doi:10.2135/cropsci2004.2540

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Brazilian Council for Research and Development (CNPq), Higher Education Improvement Bureau (CAPES) and Rio Grande do Sul State Research Assistance Foundation (FAPERGS) for grants and fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Costa de Oliveira.

Additional information

This article is the part of the Doctor of Science thesis of Crestani Maraisa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crestani, M., Silveira, S.F.S., Tessmann, E.W. et al. Combining ability for grain chemistry quality traits in a white oat diallelic cross. Euphytica 185, 139–156 (2012). https://doi.org/10.1007/s10681-012-0641-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0641-0

Keywords

Navigation