Skip to main content
Log in

Diploid and tetraploid progenitors of wheat are valuable sources of resistance to the root lesion nematode Pratylenchus thornei

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The root lesion nematode Pratylenchus thornei is widely distributed in Australian wheat (Triticum aestivum) producing regions and can reduce yield by more than 50%, costing the industry AU$50 M/year. Genetic resistance is the most effective form of management but no commercial cultivars are resistant (R) and the best parental lines are only moderately R. The wild relatives of wheat have evolved in P. thornei-infested soil for millennia and may have superior levels of resistance that can be transferred to commercial wheats. To evaluate this hypothesis, a collection of 251 accessions of wheat and related species was tested for resistance to P. thornei under controlled conditions in glasshouse pot experiments over two consecutive years. Diploid accessions were more R than tetraploid accessions which proved more R than hexaploid accessions. Of the diploid accessions, 11 (52%) Aegilops speltoides (S-[B]-genome), 10 (43%) Triticum monococcum (A m-genome) and 5 (24%) Triticum urartu (A u-genome) accessions were R. One tetraploid accession (Triticum dicoccoides) was R. This establishes for the first time that P. thornei resistance is located on the A-genome and confirms resistance on the B-genome. Since previous research has shown that the moderate levels of P. thornei resistance in hexaploid wheat are dose-dependent, additive and located on the B and D-genomes, it would seem efficient to target A-genome resistance for introduction to hexaploid lines through direct crossing, using durum wheat as a bridging species and/or through the development of amphiploids. This would allow resistances from each genome to be combined to generate a higher level of resistance than is currently available in hexaploid wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barloy D, Lemoine J, Abelard P, Tanguy AM, Rivoal R, Jahier J (2007) Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat. Mol Breed 20:31–40

    Article  CAS  Google Scholar 

  • Bijral JS, Singh K, Sharma TR (1997) Morpho-cytogenetics of Triticum aestivum L. x Aegilops speltoides Tausch. hybrids. Wheat Inf Serv 84:51–52

    Google Scholar 

  • Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) ASReml-R reference manual version 3. Department of Primary Industries and Fisheries, Brisbane

    Google Scholar 

  • Cox TS (1991) The contribution of introduced germplasm to the development of U.S. wheat cultivars. Use of Plant Introductions in Cultivar Development, Part 1, Crop Science Society of America Special Publication No. 17, USA

  • Cox TS (1998) Deepening the wheat gene pool. J Crop Prod 1:1–25

    Article  Google Scholar 

  • Cullis BR, Smith AB, Coombes N (2006) On the design of early generation variety trials with correlated data. J Agric Biol Environ Stat 11:381–393

    Article  Google Scholar 

  • Di Vito M, Greco N, Oreste G, Saxena MC, Singh KB, Kusmenoglu I (1994) Plant parasitic nematodes of legumes in Turkey. Nematol Mediter 22:245–251

    Google Scholar 

  • Eastwood RF, Lagudah ES, Appels R, Hannah M, Kollmorgen JF (1991) Triticum tauschii: a novel source of resistance to cereal cyst nematode (Heterodera avenae). Aust J Agric Res 42:69–77

    Google Scholar 

  • Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am 244:102–112

    Article  Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2007) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32

    Article  PubMed  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Friebe B, Qi LL, Nasuda S, Zhang P, Tuleen NA, Gill BS (2000) Development of a complete set of Triticum aestivumAegilops speltoides chromosome addition lines. Theor Appl Genet 101:51–58

    Article  Google Scholar 

  • Gill BS, Multani DS, Dhaliwal HS (1986) Transfer of Isoproturon resistance from Triticum monococcum to T. durum. Crop Improv 13:200–203

    Google Scholar 

  • Greco N, Di Vito M, Saxena MC, Reddy MV (1988) Investigation on the root lesion nematode Pratylenchus thornei, in Syria. Nematol Mediter 16:101–105

    Google Scholar 

  • Hollaway GJ, Vanstone VA, Nobbs J, Smith JG, Brown JS (2008) Pathogenic nematodes of cereal crops in south–west Victoria, Australia. Australas Plant Pathol 37:505–510

    Article  Google Scholar 

  • Johnson BL, Dhaliwal HS (1976) Reproductive isolation of Triticum boeoticum and Triticum urartu and the origin of the tetraploid wheats. Am J Bot 63:1088–1094

    Article  Google Scholar 

  • Kerber ER, Dyck PL (1990) Transfer to hexaploid wheat of linked genes for adult plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides X Triticum monococcum. Genome 33:530–537

    Article  CAS  Google Scholar 

  • Kerber ER, Green GJ (1980) Suppression of stem rust resistance in the hexaploid wheat cv. Canthatch by chromosome 7DL. Can J Bot 58:1347–1350

    Article  Google Scholar 

  • Ma H, Hughes GR (1993) Resistance to Septoria nodorum blotch in several Triticum species. Euphytica 70:151–157

    Article  Google Scholar 

  • Marais GF, Pretorius ZA (1996) Gametocidal effects and resistance to wheat leaf rust and stem rust in derivatives of a Triticum turgidum ssp. durum/Aegilops speltoides hybrid. Euphytica 88:117–124

    Article  Google Scholar 

  • Miedaner T, Wilde F, Steiner B, Buerstmayr H, Korzun V, Ebmeyer E (2006) Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theor Appl Genet 112:562–569

    Article  PubMed  CAS  Google Scholar 

  • Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolour fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494

    Article  PubMed  CAS  Google Scholar 

  • Murray GM, Brennan JP (2009) Estimating disease losses to the Australian wheat industry. Australas Plant Pathol 38:558–570

    Article  Google Scholar 

  • Nombela G, Romero MD (1999) Host response to Pratylenchus thornei of a wheat line carrying the Cre2 gene for resistance to Heterodera avenae. Nematology 1:381–388

    Article  Google Scholar 

  • Nombela G, Romero MD (2001) Field response to Pratylenchus thornei of a wheat line with the CreAet gene for resistance to Heterodera avenae. Eur J Plant Pathol 107:749–755

    Article  CAS  Google Scholar 

  • Ogbonnaya FC, Imtiaz M, Bariana HS, McLean M, Shankar MM, Hollaway GJ, Trethowan RM, Lagudah ES, van Ginkel M (2008) Mining synthetic hexaploids for multiple disease resistance to improve bread wheat. Aust J Agric Res 59:421–431

    Article  Google Scholar 

  • Orion D, Krikun J, Sullami M (1979) The distribution, pathogenicity and ecology of Pratylenchus thornei in the northern Negev. Phytoparasitica 7:3–9

    Article  Google Scholar 

  • Patterson HD, Thompson R (1977) Recovery of inter-block information when block sizes are unequal. Biometrika 58:545–554

    Article  Google Scholar 

  • Piepho HP (1998) Empirical best linear unbiased prediction in cultivar trials using factor-analytic variance-covariance structures. Theor Appl Genet 97:195–201

    Article  Google Scholar 

  • Pink B (2008) Year Book Australia 2008, No. 90. Australian Bureau of Statistics, Canberra. http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1301.02008?OpenDocument

  • Potgieter GF, Marais GF, DuToit F (1991) The transfer of resistance to the Russian wheat aphid from Triticum monococcum L. to common wheat. Plant Breed 106:284–292

    Article  Google Scholar 

  • Pourjam E, Kheiri A, Geraert E, Alizadeh A (1999) Variations in Iranian populations of Pratylenchus neglectus and P. thornei (Nematoda: Pratylenchidae). Iran J Plant Pathol 35:23–27

    Google Scholar 

  • Qiu YC, Zhou RH, Kong XY, Zhang SS, Jin JZ (2005) Microsatellite mapping of a Triticum urartu Tum. derived powdery mildew resistance gene transferred to common wheat (Triticum aestivum L.). Theor Appl Genet 111:1524–1531

    Article  PubMed  CAS  Google Scholar 

  • Rausher MD (2001) Co-evolution and plant resistance to natural enemies. Nature 411:857–864

    Article  PubMed  CAS  Google Scholar 

  • Rhode RA (1972) Expression of resistance in plants to nematodes. Annu Rev Phytopathol 10:233–252

    Article  Google Scholar 

  • Rivoal R, Bekal S, Valette S, Gauthier J-P, Bel Hadj Fradj M, Mokabli A, Jahier J, Nicol J, Yahyouhi A (2001) Variation in reproductive capacity and virulence on different genotypes and resistance genes of Triticeae, in the cereal cyst nematode species complex. Nematology 3:581–592

    Article  Google Scholar 

  • Roberts PA (2002) Concepts and consequences of resistance. In: Starr JL, Cook R, Bridge J (eds) Plant resistance to parasitic nematodes. CABI Publishing, Wallingford, pp 23–41

    Chapter  Google Scholar 

  • Robinson GK (1991) That BLUP is a good thing: the estimation of random effects. Stat Sci 6:15–51

    Article  Google Scholar 

  • Schmidt AL, McIntyre CL, Thompson JP, Seymour NP, Liu CJ (2005) Quantitative trait loci for root lesion nematode (Pratylenchus thornei) resistance in Middle-Eastern landraces and their potential for introgression into Australian bread wheat. Aust J Agric Res 56:1059–1068

    Article  CAS  Google Scholar 

  • Schmolke M, Mihler V, Hartl L, Zeller FJ, Hsam SLK (2011) A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum). Mol Breed (Online). doi:10.1007/s11032-011-9561-2

    Google Scholar 

  • Schneider A, Molnar I, Molnar-Lang M (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19

    Article  CAS  Google Scholar 

  • Sheedy JG, Thompson JP (2009) Resistance to the root-lesion nematode Pratylenchus thornei of Iranian landrace wheat. Australas Plant Pathol 38:478–489

    Article  Google Scholar 

  • Sheedy JG, Raupp WJ, Thompson AL, Smiley RW (2008a) Resistance to root lesion nematodes of Chinese Spring x Aegilops speltoides addition lines, 2007. Plant Dis Man Rep (Online). Report 2:N038. The American Phytopathological Society, St. Paul, MN. doi:10.1094/PDMR02

  • Sheedy JG, Smiley RW, Easley SA, Thompson AL (2008b) Resistance of Pacific Northwest spring wheat and barley cultivars to root lesion nematode (Pratylenchus thornei), 2007. Plant Dis Man Rep (Online). Report 2:N007. The American Phytopathological Society, St. Paul, MN. doi:10.1094/PDMR02

  • Singh K, Chhuneja P, Singh I, Sharma SK, Garg T, Garg M, Keller B, Dhaliwal HS (2010) Molecular mapping of cereal cyst nematode resistance in Triticum monococcum L. and its transfer to the genetic background of cultivated wheat. Euphytica 176:213–222

    Article  CAS  Google Scholar 

  • Singh RP, Huerta-Espino J, Bhavani S, Herra-Foessel SA, Singh D, Singh PK, Velu G, Mason RE, Jin Y, Njau P, Crossa J (2011) Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 179:175–186

    Article  Google Scholar 

  • Subbotin SA, Sturhan D, Rumpenhorst HJ, Moens M (2002) Description of the Australian cereal cyst nematode Heterodera australis sp. n. (Tylenchida: Heteroderidae). Russ J Nematol 10:139–148

    Google Scholar 

  • Thompson JP (1990) Treatments to eliminate root-lesion nematode (Pratylenchus thornei Sher and Allen) from a vertisol. Nematologica 36:123–127

    Article  Google Scholar 

  • Thompson JP (2008) Resistance to root-lesion nematodes (Pratylenchus thornei and P. neglectus) in synthetic hexaploid wheats and their durum and Aegilops tauschii parents. Aust J Agric Res 59:432–446

    Article  Google Scholar 

  • Thompson CH, Beckman GG (1959) Soils and land use in the Toowoomba area, Darling Downs, Queensland. Soils and land use series No. 28. CSIRO Melbourne

  • Thompson JP, Haak MI (1997) Resistance to root-lesion nematode (Pratylenchus thornei) in Aegilops tauschii Coss., the D-genome donor to wheat. Aust J Agric Res 48:553–559

    Article  Google Scholar 

  • Thompson JP, Seymour NP (2011) Inheritance of resistance to root-lesion nematode (Pratylenchus thornei) in wheat landraces and cultivars from the West Asia and North Africa (WANA) region. Crop Pasture Sci 62:82–93

    Article  Google Scholar 

  • Thompson JP, Brennan PS, Clewett TG, Sheedy JG, Seymour NP (1999) Progress in breeding wheat for tolerance and resistance to root-lesion nematode (Pratylenchus thornei). Australas Plant Pathol 28:45–52

    Article  Google Scholar 

  • Thompson JP, Sheedy JG, Seymour NP, Clewett TG, Mason LR, Sheppard JA, Banks PM (2001) Advances in breeding wheat for tolerance and resistance to Pratylenchus thornei and P. neglectus for the northern region. In Proceedings of the 10th assembly of the wheat breeding society of Australia. 16–21 September 2001, Mildura, Australia. pp 123–127

  • Thompson JP, Owen KJ, Stirling GR, Bell MJ (2008) Root-lesion nematodes (Pratylenchus thornei and P. neglectus): a review of recent progress in managing a significant pest of grain crops in northern Australia. Australas Plant Pathol 37:235–242

    Article  Google Scholar 

  • Thompson JP, O’Reilly MM, Clewett TG (2009) Resistance to the root-lesion nematode Pratylenchus thornei in wheat landraces and cultivars from the West Asia and North Africa (WANA) region. Crop Pasture Sci 60:1209–1217

    Article  Google Scholar 

  • Thompson JP, Clewett TG, Sheedy JG, Reen RA, O’Reilly MM, Bell KL (2010) Occurrence of root-lesion nematodes (Pratylenchus thornei and P. neglectus) and stunt nematode (Merlinius brevidens) in the northern grain region of Australia. Australas Plant Pathol 39:254–264

    Article  Google Scholar 

  • Toktay H, McIntyre CL, Nicol JM, Ozkan H, Elekcioglu HI (2006) Identification of common root-lesion nematode (Pratylenchus thornei Sher et Allen) loci in wheat. Genome 49:1319–1323

    Article  PubMed  CAS  Google Scholar 

  • Valkoun JJ (2001) Wheat pre-breeding using wild progenitors. Euphytica 119:17–23

    Article  Google Scholar 

  • Vanstone VA, Hollaway GJ, Stirling GR (2008) Managing nematode pests in the southern and western regions of the Australian cereal industry: continuing progress in a challenging environment. Australas Plant Pathol 37:220–234

    Article  Google Scholar 

  • Whitehead AG, Hemming JR (1965) A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Ann Appl Biol 55:25–38

    Article  Google Scholar 

  • Williams KJ, Taylor SP, Bogacki P, Pallotta M, Bariana HS, Wallwork H (2002) Mapping of the root lesion nematode (Pratylenchus neglectus) resistance gene Rlnn1 in wheat. Theor Appl Genet 104:874–879

    Article  PubMed  CAS  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zwart RS, Thompson JP, Godwin ID (2004) Genetic analysis of resistance to root-lesion nematode (Pratylenchus thornei) in wheat. Plant Breed 123:209–212

    Article  Google Scholar 

  • Zwart RS, Thompson JP, Godwin ID (2005) Identification of quantitative trait loci for resistance to two species of root-lesion nematodes (Pratylenchus thornei and P. neglectus) in wheat. Aust J Agric Res 56:345–352

    Article  CAS  Google Scholar 

  • Zwart RS, Thompson JP, Sheedy JG, Nelson JC (2006) Mapping quantitative trait loci for resistance to Pratylenchus thornei from synthetic hexaploid wheat in the International Triticeae Mapping Initiative (ITMI) population. Aust J Agric Res 57:525–530

    Article  Google Scholar 

  • Zwart RS, Thompson JP, Milgate AW, Bansal UK, Williamson PM, Raman H, Bariana HS (2010) QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol Breed 26:107–124

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jon Raupp (Kansas State University Wheat Genetics and Genomic Resource Center) for supplying wheat cultivars and a selection of related species representing the A and B-genomes used in this study, Prof. John Irwin (University of Queensland) for helpful advice, Mr. Andrew Skerman for technical assistance, and Mr. Michael McKay and Mr. Greg Grimes (Australian Winter Cereals Collection) for importing the seed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Sheedy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 544 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheedy, J.G., Thompson, J.P. & Kelly, A. Diploid and tetraploid progenitors of wheat are valuable sources of resistance to the root lesion nematode Pratylenchus thornei . Euphytica 186, 377–391 (2012). https://doi.org/10.1007/s10681-011-0617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0617-5

Keywords

Navigation