Skip to main content
Log in

Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus Thunb. Matsum. & Nakai

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Watermelon, Citrullus lanatus Thunb. Matsum. & Nakai is an important vegetable crop worldwide. Due to its narrow genetic base, detection and utilization of the genetic variations, cultivar identification and increasing genetic diversity are some important tasks for watermelon breeders. Molecular markers, especially microsatellites or simple sequence repeats (SSRs) are playing increasingly important roles for these purposes. In the present study, a core set of 23 highly informative SSR markers was developed for watermelon genetic diversity analysis. Based on whole genome sequencing of 17 watermelon inbred lines, we identified 3.9 million single nucleotide polymorphisms (SNPs) which were used to construct a SNP-based dendrogram for the 17 lines. Meanwhile, from the sequenced genome, 13,744 SSRs were developed, of which 704 were placed on a high-resolution watermelon linkage map. To develop the core set SSR markers, 78 of the 704 mapped SSRs were selected as the candidate markers. Using the SNP-based dendrogram as calibration, 23 SSR markers evenly distributed across the genome were identified as the core marker set for watermelon genetic diversity analysis. Each marker was able to detect 2–7 alleles with polymorphism information content values ranging from 0.45 to 0.82. The dendrograms of 17 watermelon lines based on SNPs, the base set of 78 SSRs and the core set of 23 SSRs were highly consistent. The utility of this core set SSRs was demonstrated in 100 commercial watermelon cultivars and elite lines, which could be placed into six clusters that were largely consistent with previous classification based on morphology and parentage data. This core set of SSR markers should be very useful for genotyping and genetic variation analysis in watermelon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Appleby N, Edwards D, Batley J (2009) New technologies for ultra-high throughput genotyping in plants. In: Somers DJ et al (eds) Methods in molecular biology. Plant Genomics, Humana Press, pp 19–39

    Google Scholar 

  • Bisognin DA (2002) Origin and evolution of cultivated cucurbits. Ciência Rural Santa Maria 32(5):715–723

    Article  Google Scholar 

  • Burkill HM (1985) The useful plants of West Tropical Africa, vol 1, 2nd edn. Richmond, Surrey, UK, Royal Botanic Gardens, Kew

  • Che KP, XU Y, Liang CY, Gong GY, Weng ML, Zhang HY, Jin DM, Wang B (2003) AFLP fingerprint and SCAR marker of watermelon core collection. Acta Bot Sinica 45:731–735

    CAS  Google Scholar 

  • Coryell VH, Jessen H, Schupp JM, Webb D, Keim P (1999) Allele-specific hybridization markers for soybean. Theor Appl Genet 98:690–696

    Article  CAS  Google Scholar 

  • Crall JM, Alstrom GW (1983) ‘Sugarlee’ watermelon. HortScience 18:496–497

    Google Scholar 

  • Dane F, Lang P (2004) Sequence variation at cpDNA regions of watermelon and related species: implications for the evolution of Citrullus haplotypes. Am J Bot 91:1922–1929

    Article  PubMed  CAS  Google Scholar 

  • Ebana K, Kojima Y, Fukuoka S, Nagamine T, Kawase M (2008) Development of mini core collection of Japanese rice landrace. Breed Sci 58:281–291

    Article  Google Scholar 

  • Federico LIL, Voort AV, Osborn TC (2008) Development of a set of public SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L genotype. Theor Appl Genet 117:977–985

    Article  Google Scholar 

  • Guerra-Sanz JM (2002) Citrullus simple sequence repeats markers from sequence databases. Mol Ecol Notes 2:223–225

    Article  CAS  Google Scholar 

  • Harris KR, Wechter WP, Lanini B, Vivoda E, Levi A (2008) In search of markers linked to Fusarium wilt race 1 resistance in watermelon. HortScience 43:1238

    Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  PubMed  CAS  Google Scholar 

  • Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinform 8:460

    Article  Google Scholar 

  • Ibrahim AA, Mohammad AB, Haseeb AK, Ahmad HAlF, Ali AAIH, Ali HB, Mohammad AlS, Mohammad S (2010) A brief review of molecular techniques to assess plant diversity. Int J Mol Sci 11:2079–2096

    Article  Google Scholar 

  • Jarret RL, Merrick LC, Holms T, Evans J, Aradhya MK (1997) Simple sequence repeats in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai]. Genome 40:433–441

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey C (2001) Cucurbitaceae. In: Hanelt P (ed) Mansfeld’s encyclopedia of agricultural and horticultural crops, vol 3. Springer, pp 1510–1557

  • Krishna GK, Zhang J, Burow M, Pittman R, Delikostadinov S, Lu Y, Puppala N (2004) Genetic diversity analysis in valencia peanut(Arachis hypogaea L.) using microsatellite markers. Cell Mol Biol Lett 9:685–697

    PubMed  CAS  Google Scholar 

  • Levi A, Thomas CE (1999) An improved procedure for isolation of high quality DNA from watermelon and melon leaves. Cucurbit Genet Coop Rep 22:41–42

    Google Scholar 

  • Levi A, Thomas CE, Keinath AP, Wehner TC (2000) Estimation of genetic diversity among Citrullus accessions using RAPD markers. Acta Hortic 510:385–390

    Google Scholar 

  • Levi A, Thomas CE, Keinath AP, Wehner TC (2001a) Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet Resour Crop Evol 48:559–566

    Article  Google Scholar 

  • Levi A, Thomas CE, Wehner TC, Zhang X (2001b) Low genetic diversity indicates the need to broaden the genetic base of cultivated watermelon. HortScience 36:1096–1101

    CAS  Google Scholar 

  • Levi A, Thomas CE, Newman M, Reddy OUK, Zhang X (2004) ISSR and AFLP markers sufficiently differ among American watermelon cultivars with limited genetic diversity. J Am Soc Hort Sci 129:553–558

    CAS  Google Scholar 

  • Levi A, Thomas CE, Trebitsh T, Salman A, King J, Karalius J, Newman M, Reddy OUK, Xu Y, Zhang X (2006) An extended linkage map for watermelon based on SRAP, AFLP, SSR, ISSR and RAPD markers. J Am Soc Hort Sci 131:393–402

    CAS  Google Scholar 

  • Levi A, Wechter WP, Davis AR (2009) EST-PCR markers representing watermelon fruit genes are polymorphic among watermelon heirloom cultivars xharing a narrow genetic base. Plant Genet Resour 7:16–32

    Article  CAS  Google Scholar 

  • Levi A, Wechter wp, Harris-Shultz KR, Davis AR, Fei Z (2010) High frequency oligonucleotides in watermelon expressed sequenced tag-unigenes are useful in producing polymorphic polymerase chain reaction markers among watermelon genotypes. J Amer Hort Sci 135:369–378

    Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009a) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  PubMed  CAS  Google Scholar 

  • Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K, Wang J (2009b) SNP detection for massively parallel whole-genome resequencing. Genome Res 19:1124–1132

    Article  PubMed  CAS  Google Scholar 

  • Liu KJ, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Mujaju C, Sehic J, Werlemark G, Garkava-Gustavsson L, Faith M, Nybom H (2010) Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers. Hereditas 147:142–153

    Article  PubMed  CAS  Google Scholar 

  • Naito Y, Suzuki S, Iwata Y, Kuboyama T (2008) Genetic diversity and relationship analysis of peanut germplasm using SSR markers. Breed Sci 58:293–300

    Article  CAS  Google Scholar 

  • Navot N, Zamir D (1987) Isozyme and seed protein phylogeny of the genus Citrullus (Cucurbitaceae). Plant Syst Evol 156:61–67

    Article  Google Scholar 

  • Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 41:225–233

    Article  PubMed  CAS  Google Scholar 

  • Oliveira EJ, Pádua JG, Zucchi MI (2006) Origin, evolution and genome distribution of microsatellites. Genet Mol Biol 29:294–307

    Article  CAS  Google Scholar 

  • Padmavathi N, Tomason YR, Jeong J, Ponniah SK, Karunathilake A, Levi A, Perumal R, Reddy UK (2010) Genetic reticulation and interrelationships among Citrullus species as revealed by joint analysis of shared AFLPs and species-specific SSR alleles. Plant Genet Resour 8:16–25

    Article  Google Scholar 

  • Pavlicek A, Hrda S, Flegr J (1999) FreeTree-freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia. Folia Biologica (Praha) 45:97–99

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Simmonds NW (1979) Principles of crop improvement. Longman Group Ltd. pp 277

  • Smith JS, Chin CL, Shu H et al (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zeamays L.): comparisons with data from RFLP and pedigree. Theor Appl Genet 95:163–173

    Article  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman & Co, San Francisco, p 573

    Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi:10.1093/molbev/msr121

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA. Nucleic Acids Res 17:6463

    Article  PubMed  CAS  Google Scholar 

  • Thies JJ, Hassell R, Kousik C, Olson S, Levi A (2010) Grafting for managing southern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Dis 94:1195–1199

    Article  Google Scholar 

  • Varshney RK, Thiel T, Sretenovic-Rajicic T, Baum M, Valkoun J, Guo P, Grando S, Ceccarelli S, Graner A (2008) Identification and validation of a core set of informative genic SSR and SNP markers for assaying functional diversity in barley. Mol Breed 22:1–13

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Fritjers A, Pot J, Peleman J, Kupier M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wehner TC (1999a) Vegetable cultivar descriptions for North America, list 24, 1999. HortScience 34:763–806

    Google Scholar 

  • Wehner TC (1999b) Vegetable cultivar descriptions for North America, list 25, 1999. HortScience 34:957–1012

    Google Scholar 

  • Wehner TC (2002) Vegetable cultivar descriptions for North America, list 26, 2002. HortScience 37:15–78

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Xie R, Li X, Chai M, Sibg L, Jia H, Wu D, Chen M, Chen K, Aranzana MJ, Gao Z (2010) Evaluation of the genetic diversity of Asian peach accessions using a selected set of SSR markers. Sci Hort 125:622–629

    Article  CAS  Google Scholar 

  • Zhang AP, Wang XW, Zhang YL, Zhao L, Xu MJ (2008) SRAP analysis for the genetic diversity of watermelon variety resources. Chin Agric Sci Bull 4:115–120

    Google Scholar 

  • Zhang FX, Luan FS, Sheng YY (2010) Analysis of genetic diversity on different ecological watermelon (Citrullus lanatus (Thunb.) Matsum. et Nakai) germplasm using SSR markers. Ch Veg 14:36–43

    Google Scholar 

Download references

Acknowledgments

This work was supported by funds from Beijing Municipal Science & Technology Commission, China (D08070500690803, D111100001311002, KJCX201101010, Z09090501040902 and 5100001); The Ministry of Science and Technology of China (2009BADB8B02, 2010DFB33740, 30972015, 31171980 and 2010AA10A107), and the Ministry of Agriculture of China (CARS-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Wang, H., Guo, S. et al. Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus Thunb. Matsum. & Nakai. Euphytica 186, 329–342 (2012). https://doi.org/10.1007/s10681-011-0574-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0574-z

Keywords

Navigation