Skip to main content
Log in

Characterization and molecular mapping of EMS-induced brittle culm mutants of diploid wheat (Triticum monococcum L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Diploid wheat (Triticum monococcum L, AmAm) is an ideal material for induced mutations which can be easily characterized and transferred to polyploid wheats. The EMS-induced brittle culm mutants, brc1, brc2, and brc3 used in the present investigation, were isolated from T. monococcum. All the brittle mutants had brittle roots, leaves, leaf sheaths, culms, and spikes, and were also susceptible to lodging. The mutants had 47–57% reduced α-cellulose in the secondary cell walls than that of T. monococcum indicating that all of them had defective synthesis of cellulose. All the mutants were monogenic recessive. Bulk segregation analysis of the mutants, using Am genome anchored SSR markers in their F 2 populations with T. boeoticum, located the mutants, brc1, brc2, and brc3 on chromosome 6A, 3A, and 1A of T. monococcum, respectively. Molecular analysis of the putatively linked markers showed that brc1 mapped on chromosome 6AS between Xbarc37 and Xbarc113 markers, brc2 on chromosome 3AL between Xcfd62 and Xcfa2170 markers whereas brc3 mapped on chromosome 1AL between Xgwm135 and Xwmc470 markers. Isolation and mapping of three different brittle culm mutants in wheat for the first time shows that there might be many more genes in wheat which affect synthesis and deposition of cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arioli T, Peng LC, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Höfte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson RE (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720

    Article  PubMed  CAS  Google Scholar 

  • Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1, 3;1, 4)-b-D-glucans. Science 311:1940–1942

    Article  PubMed  CAS  Google Scholar 

  • Carpita N, McCann M (2000) The cell wall. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville MD, pp 52–108

    Google Scholar 

  • Carpita N, Tierney M, Campbell M (2001) Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. Plant Mol Biol 47:1–5

    Article  PubMed  CAS  Google Scholar 

  • Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS, Dolan M, Kinney AJ, Tomes D, Nichols S, Anderson P (2004) Guar seed b-mannan synthase is a member of the cellulose synthase super gene family. Science 303:363–366

    Google Scholar 

  • Hu Y, Zhong RQ, Herbert Morrison III W, Ye ZH (2003) The Arabidopsis RHD3 gene is required for cell wall biosynthesis and actin organization. Planta 217:912–921

    Article  PubMed  CAS  Google Scholar 

  • Johansen DA (1940) Plant microtechnique Ist Ed. 182. McGraw-Hill, New York

    Google Scholar 

  • Jones L, Ennos AR, Turner SR (2001) Cloning and characterization of irregular xylem 4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 26:205–216

    Article  PubMed  CAS  Google Scholar 

  • Joshi CP, Mansfield SD (2007) The cellulose paradox—simple molecule, complex biosynthesis. Curr Opin Plant Biol 10:220–226

    Article  PubMed  CAS  Google Scholar 

  • Kokubo A, Kuraishi S, Sakurai N (1989) Culm strength of barley correlation among maximum bending stress, cell wall dimensions, and cellulose content. Plant Physiol 91:876–882

    Article  PubMed  CAS  Google Scholar 

  • Kokubo A, Sakurai N, Kuraishi S, Takabe K (1991) Culm brittleness of barley (Hordeum vulgare L.) mutants is caused by smaller number of cellulose molecules in cell wall. Plant Physiol 97:509–514

    Article  PubMed  CAS  Google Scholar 

  • Kristensen JB, Thygesen LG, Felby C, Jorgensen H, Elder T (2008) Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels. doi:10.1186/1754-6834-1-5

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Li YH, Qian Q, Zhou YH, Yan MX, Sun L, Zhang M et al (2003) BRITTLE CULM1, which encodes a COBRA-Like protein affects the mechanical properties of rice plant. Plant Cell 15:2020–2031

    Article  PubMed  CAS  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1990) Constructing genetic linkage maps with MAPMAKER: a tutorial and reference manual. Technical report. Whitehead Institute for Biomedical Research, Cambridge

    Google Scholar 

  • Liu RG, Yu H, Huang Y (2005) Structure and morphology of cellulose in wheat straw. Cellulose 12:25–34

    Article  Google Scholar 

  • McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–820

    Article  CAS  Google Scholar 

  • Mou ZL, He YK, Dai Y, Liu XF, Li J (2000) Deficiency in fatty acid synthase leads to premature cell death and dramatic alteration in plant morphology. Plant Cell 12:405–417

    Article  PubMed  CAS  Google Scholar 

  • Rosen ML, Edman M, Sjostrom M, Wieslander A (2004) Recognition of fold and sugar linkage for glycosyl transferases by multivariate sequence analysis. J Biol Chem 279:38683–38692

    Article  PubMed  CAS  Google Scholar 

  • Sado PE, Tessier D, Vasseur M, Elmorjani K, Guillon F, Saulnier L (2009) Integrating genes and phenotype: a wheat-Arabidopsis-rice glycosyltransferase database for candidate gene analyses. Func Integr Genomics 9(1):43–58

    Article  CAS  Google Scholar 

  • Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C (2009) Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci 1106(35):14908–14913

    Article  Google Scholar 

  • Sindhu A, Langewisch T, Olek A, Multani DS, McCann MC, Vermerris W, Carpita NC, Johal G (2007) Maize brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiol 145(4):1444–1459

    Article  PubMed  CAS  Google Scholar 

  • Singh K, Ghai M, Garg M, Chhuneja P, Kaur P, Schnurbusch T, Keller B, Dhaliwal HS (2007) An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum x T. monococcum RIL population. Theor Appl Genet 115:301–312

  • Somers DJ, Isaac P, Edwards K (2004) A high -density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    Article  PubMed  CAS  Google Scholar 

  • Srivastava LM (1966) Histochemical studies on lignin. Tappi 49:173–183

    CAS  Google Scholar 

  • Stéphanie R, Adeline B, Olivier G, Daniel K, B′eatrice SJ, Sandra P, Hauser MT, Höfte H, Vernhettes S (2005) An Arabidopsis endo-1, 4-ß-DGlucanase involved in cellulose synthesis undergoes regulated intracellular cycling. Plant Cell 17:3378–3389

    Article  Google Scholar 

  • Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H (2003) Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 133:73–83

    Article  PubMed  CAS  Google Scholar 

  • Taylor NG, Scheible W, Cutler S, Somerville CR, Turner SR (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11:69–779

    Article  Google Scholar 

  • Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci 100:1450–1455

    Article  PubMed  CAS  Google Scholar 

  • Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis in the secondary cell wall. Plant Cell 9:689–701

    Article  PubMed  CAS  Google Scholar 

  • Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424

    Article  PubMed  CAS  Google Scholar 

  • Van Soest PJ, Robertson JB (1985) Analysis of Forages and Fibrous Food, vol 74–75, pp 80–82. In: A laboratory manual for animal science 613. Cornell University, Ithaca, New York

    Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Method for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597

    Article  PubMed  Google Scholar 

  • Zhong R, Burk DH, Morrison WH III, Ye ZH (2002) A kinesin like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14:3101–3117

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. T. R. Sharma, Principal Scientist, NRC, Indian Agriculture Research Institute, New Delhi for his help in bioinformatics. The lead author is thankful to the Council of Scientific and Industrial Research, Government of India, for providing financial assistance in the form of Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harcharan S. Dhaliwal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1892 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javed Ansari, M., Kumar, R., Singh, K. et al. Characterization and molecular mapping of EMS-induced brittle culm mutants of diploid wheat (Triticum monococcum L.). Euphytica 186, 165–176 (2012). https://doi.org/10.1007/s10681-011-0532-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0532-9

Keywords

Navigation