Skip to main content

Genotypic variability and genotype by environment interactions for inulin content of Jerusalem artichoke germplasm

Abstract

Genetic variations in germplasm and genotype × environment interaction (G × E) are important for crop improvement. The objectives were to explore genetic variation in Jerusalem artichoke germplasm and to evaluate G × E interaction for inulin content. Seventy-nine accessions of Jerusalem artichoke were evaluated in a randomized complete block design with two replications for three seasons. Significant variation in inulin content (55.3–74.0% dry weight) was observed and the genotypes with high inulin content could be identified although there was intermediate G × E interaction. Genotypes were also significantly different for days to maturity, fresh tuber yield, biomass and harvest index and G × E interactions for these traits were also significant. The correlation between inulin content and days to maturity was not significant (r = −0.20), whereas inulin content and fresh tuber yield were significantly associated (r = 0.22). JA 37 and CN 52867 are promising for high yield and inulin content.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Azis BH, Chin B, Deacon MP, Harding SE, Pavlov GM (1999) Size and shape of inulin in dimethyl sulphoxide solution. Carbohyd Poly 38:231–234

    Article  CAS  Google Scholar 

  2. Baldini M, Danuso F, Turi M, Vannozzi GP (2004) Evaluation of new clones of Jerusalem artichoke (Helianthus tuberosus L.) for inulin and sugar yield from stalks and tubers. Ind Crop Prod 19:25–40

    Article  CAS  Google Scholar 

  3. Ben Chekroun M, Amzile J, Mokhtari A, El Haloui NE, Prevost J, Fontanillas R (1996) Comparison of fructose production by 37 cultivars of Jerusalem artichoke (Helianthus tuberosus L.). NZ J Crop Hort Sci 24:115–120

    Article  Google Scholar 

  4. Berenji J, Sikora V (2001) Variability and stability of tuber yield of Jerusalem atichoke (Helianthus tuberosus L.). Helia 24:25–32

    Google Scholar 

  5. Bricker AA (1989) MSTAT-C user’s guide. Michigan State University, East Lansing

    Google Scholar 

  6. Cherbut C (2002) Inulin and oligofructose in the dietary fibre concept. Br J Nutr 87:S159–S162

    PubMed  Article  CAS  Google Scholar 

  7. Coussement Paul AA (1999) Inulin and oligofructose: safe intakes and legal status. J Nutr 129:1412S–1417S

    Google Scholar 

  8. Danilčenko H, Jarienė E, Aleknavičienė P, Gajewski M (2008) Quality of Jerusalem artichoke (Helianthus tuberosus L.) tubers in relation to storage conditions. Not Bot Hort Agrobot Cluj 36:23–27

    Google Scholar 

  9. Davidson MH, Maki KC (1999) Effects of dietary inulin on serum lipids. J Nutr 129:1474S–1477S

    PubMed  CAS  Google Scholar 

  10. Geng-Mao Z, Zhao-Pu L, Ming-Da C, Shi-Wei G (2008) Soil properties and yield of Jerusalem artichoke (Helianthus tuberosus L.) with seawater irrigation in North China plain. Pedosphere 18:195–202

    Article  Google Scholar 

  11. Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. John Wiley and Sons, New York

    Google Scholar 

  12. Hellwege EM, Czapla S, Jahnke A, Willmitzer L, Heyer AG (2000) Transgenic potato (Solanum tuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus) roots. PNAS 97:8699–8704

    PubMed  Article  CAS  Google Scholar 

  13. Kays SJ, Nottingham SF (2008) Biology and chemistry of Jerusalem artichoke (Helianthus tuberosus L.). CRC Press, Florida

    Google Scholar 

  14. Kiru S, Nasenko I (2010) Use of genetic resources from Jerusalem artichoke collection of N. Vavilov institute in breeding for bioenergy and health security. Agron Res 8:625–632

    Google Scholar 

  15. Kleessen B, Schwarz S, Boehm A, Fuhrmann H, Richter A, Henle T, Krueger M (2007) Jerusalem artichoke and chicory inulin in bakery products affect faecal microbiota of healthy volunteers. Br J Nutr 98:540–549

    PubMed  Article  CAS  Google Scholar 

  16. Kocsis L, Kaul H-P, Praznik W, Liebhard P (2007a) Influence of harvest date on shoot and tuber yield of different Jerusalem artichoke (Helianthus tuberosus L.) cultivars in the semiarid production area of Austria. Ger J Agron 11:67–76

    Google Scholar 

  17. Kocsis L, Liebhard P, Praznik W (2007b) Effect of seasonal changes on content and profile of soluble carbohydrates in tubers of different varieties of Jerusalem artichoke (Helianthus tuberosus L.). J Agric Food Chem 55:9401–9408

    PubMed  Article  CAS  Google Scholar 

  18. Kocsis L, Liebhard P, Praznik W (2008) Influence of harvest date on tuber growth, tuber dry matter content, inulin and sugar yield of different Jerusalem artichoke (Helianthus tuberosus L.) cultivars in the semiarid production area of Austria. Ger J Agron 12:8–21

    Google Scholar 

  19. Lebot V (2009) Tropical root and tuber crop: cassava, sweet potato, yams and aroids. CABI, UK

    Google Scholar 

  20. Milner JA (1999) Functional foods and health promotion. J Nutr 129:1395S–1397S

    PubMed  CAS  Google Scholar 

  21. Moerman FT, Van Leeuwen MB, Delcour JA (2004) Enrichment of higher molecular weight fractions in inulin. J Agric Food Chem 52:3780–3783

    PubMed  Article  CAS  Google Scholar 

  22. Monti A, Amaducci MT, Pritoni G, Venturi G (2005) Growth, fructan yield and quality of chicory (Cichorium intybus L.) as related to photosynthetic capacity, harvest time, and water regime. J Exp Bot 56:1389–1395

    PubMed  Article  CAS  Google Scholar 

  23. Muir JG, Shepherd SJ, Rosella O, Rose R, Barrett JS, Gibson PR (2007) Fructan and free fructose content of common Australian vegetables and fruit. J Agric Food Chem 55:6619–6627

    PubMed  Article  CAS  Google Scholar 

  24. Niness KR (1999) Inulin and oligofructose: what are they?. J Nutr 129:1402S–1406S

    PubMed  CAS  Google Scholar 

  25. Ordoñez JR SA, Hernandez JE, Guzman PS, Borromeo TH, Redoña ED (2005) Genetic variance and breeding potential of restorer lines in Philippine rice (Oryza sativa L.) germplasm. SABRAO J Breed Genet 37:159–169

    Google Scholar 

  26. Pimsaen W, Jogloy S, Suriharn B, Kesmala T, Pensuk V, Patanothai A (2010) Genotype by environment (G × E) interactions for yield components of Jerusalem artichoke (Helianthus tuberosus L.). Asian J Plant Sci 9:11–19

    Article  Google Scholar 

  27. Prosky L, Hoebregs H (1999) Methods to determine food inulin and oligofructose. J Nutr 129:1418S–1423S

    PubMed  CAS  Google Scholar 

  28. Raccuia SA, Melilli MG (2010) Seasonal dynamics of biomass, inulin, and water-soluble sugars in roots of Cynara cardunculus L. Field Crop Res 116:147–153

    Article  Google Scholar 

  29. Roberfroid MB (1999) Caloric value of inulin and oligofructose. J Nutr 129:1436S–1437S

    PubMed  CAS  Google Scholar 

  30. Roberfroid B (2007a) Prebiotics: the concept revisited. J Nutr 137:830S–837S

    PubMed  CAS  Google Scholar 

  31. Roberfroid MB (2007b) Inulin-type fructans: functional food ingredients. J Nutr 137:2493S–2502S

    PubMed  CAS  Google Scholar 

  32. Rodrigues MA, Sousa L, Cabanas JE, Arrobas M (2007) Tuber yield and leaf mineral composition of Jerusalem artichoke (Helianthus tuberosus L.) grown under different cropping practices. Span J Agric Res 5:545–553

    Google Scholar 

  33. Saengkanuk A, Nuchadomrong S, Jogloy S, Patanothai A, Srijaranai S (2011) A simplified spectrophotometric method for the determination of inulin in Jerusalem artichoke (Helianthus tuberosus L.) tubers. Eur Food Res Technol (accepted)

  34. Schittenhelm S (1999) Agronomic performance of root chicory, Jerusalem artichoke, and sugarbeet in stress and nonstress environments. Crop Sci 39:1815–1823

    Article  Google Scholar 

  35. Seiler GJ, Campbell LG (2004) Genetic variability for mineral element concentrations of wild Jerusalem artichoke forage. Crop Sci 44:289–292

    CAS  Google Scholar 

  36. Seiler GJ, Campbell LG (2006) Genetic variability for mineral concentration in the forage Jerusalem artichoke cultivars. Euphytica 150:281–288

    Article  CAS  Google Scholar 

  37. Serieys H, Souyris I, Gil A, Poinso B, Bervillé A (2010) Diversity of Jerusalem artichoke clones (Helianthus tuberosus L.) from the INRA-Montpellier collection. Genet Resour Crop Evol 57:1207–1215

    Article  Google Scholar 

  38. Shu C-K (1998) Flavor components generated from inulin. J Agric Food Chem 46:1964–1965

    Article  CAS  Google Scholar 

  39. Statistix8 (2003) Statistix8: analytical software user’s manual. Tallahassee, Florida

    Google Scholar 

  40. Stevens CV, Meriggi A, Booten K (2001) Chemical modification of inulin, a valuable renewable resource, and its industrial applications. Biol Macromol 2:1–16

    CAS  Google Scholar 

  41. Terzić S, Atlagić J (2009) Nitrogen and sugar content variability in tubers of Jerusalem artichoke (Helianthus tuberosus). Genetika 41:289–295

    Article  Google Scholar 

  42. Valluru R, Van den Ende W (2008) Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 59:2905–2916

    PubMed  Article  CAS  Google Scholar 

  43. Vasić D, Miladinović J, Marjanović-Jeromela A, Škorić D (2002) Variability between Helianthus tuberosus accessions collected in the USA and Montenegro. Helia 25:79–84

    Google Scholar 

  44. Xiao-Hua L, Zeng-Rong H, Yu-Ling H, Jian K, Zhen-Hua Z, Zhao-Pu L (2010) Response of two Jerusalem artichoke (Helianthus tuberosus) cultivars differing in tolerance to salt treatment. Pedosphere 20:515–524

    Article  Google Scholar 

  45. Zaky EA (2009) Physiological response to diets fortified with Jerusalem artichoke tubers (Helianthus tuberosus L.) powder by diabetic rats. American-Eurasian J Agric Environ Sci 5:682–688

    CAS  Google Scholar 

Download references

Acknowledgments

The study was funded under the Strategic Scholarship Program for Frontier Research Network for the Join Ph.D. Program Thai Doctoral Degree from the Office of the Higher Education Commission, Thailand. Grateful acknowledgments are made to the Khon Kaen University Senior Research Scholar Project of Assoc. Prof. Dr. Sanun Jogloy under Khon Kaen University Fund. Miss Araya Saengkanuk is acknowledged for her assistance in inlin analysis. Department of Chemistry, Faculty of Science, Khon Kaen University, Thailand is acknowledged for providing laboratory facilities. The North Central Regional Plant Introduction Station, USA, the Leibniz Institute of Plant Genetics and Crop Plant Research, Germany and the Plant Gene Resource of Canada are acknowledged for their donation of Jerusalem artichoke germplasm.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sanun Jogloy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Puttha, R., Jogloy, S., Wangsomnuk, P.P. et al. Genotypic variability and genotype by environment interactions for inulin content of Jerusalem artichoke germplasm. Euphytica 183, 119–131 (2012). https://doi.org/10.1007/s10681-011-0520-0

Download citation

Keywords

  • Biomass
  • Days to maturity
  • Helianthus tuberosus L.
  • Tuber yield