Skip to main content

Advertisement

Log in

Legume genetic resources: management, diversity assessment, and utilization in crop improvement

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Grain legumes contribute significantly to total world food production. Legumes are the primary source of dietary proteins in many developing countries, where protein hunger and malnutrition are widespread. Grain legumes germplasm constitute ~15% of the 7.4 M accessions preserved globally. Nearly, 78% of the CGIAR’s, 0.217 M accessions, have been characterized, compared to 34% of national genebank collections. Interestingly, limited data on grain quality are available as the primary focus has been on morpho-agronomic traits. Clearly, more resources should be targeted on biochemical evaluation to identify nutritionally rich and genetically diverse germplasm. The formation of core and mini core collections has provided crop breeders with a systematic yet manageable entry point into global germplasm resources. These subsets have been reported for most legumes and have proved useful in identifying new sources of variation. They may however not eliminate the need to evaluate entire collections, particularly for very rare traits. Molecular characterization and association mapping will further aid to insights into the structure of legume diversity and facilitate greater use of collections. The use of high resolution elevational climate models has greatly improved our capacity to characterize plant habitats and species’ adaptive responses to stresses. Evidence suggests that there has been increased use of wild relatives as well as new resources resulting from mutagenesis to enhance the genetic base of legume cultigens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acosta-Gallego JA, Kelly JD, Gepts P (2007) Prebreeding in common bean and uses of genetic diversity from wild germplasm. Crop Sci 47(S3):S44–S59

    Google Scholar 

  • Allard RW (1988) Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild progenitors. J Hered 79:225–238

    PubMed  CAS  Google Scholar 

  • Ayad WG, Hodgkin T, Jaradat A, Rao VR (eds) (1997) Molecular genetic techniques for plant genetic resources. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Baranger A, Aubert G, Arnao G, Laine AL, Denoit G, Potier J, Weinachter C, Lejeune-Henaut I, Lallemand J, Burstin J (2004) Genetic diversity within Pisum sativum using protein and PCR-based markers. Theor Appl Genet 108:1309–1321

    Article  PubMed  CAS  Google Scholar 

  • Baur E (1914) Die Bedeutung der primitiven Kulturrasen und der wilden Verwandten unserer Kulturpflanzen fur die Pflanzenzuchtung. Jb Deut Landw Ges 29:104–109

    Google Scholar 

  • Beaumont MA, Rannala B (2004) The Bayesian revolution in genetics. Nat Rev 5:251–261

    CAS  Google Scholar 

  • Ben-David R, Abbo S, Berger JD (2010) Stress gradients select for ecotype formation in Cicer judaicum Boiss., a wild relative of domesticated chickpea. Genet Resour Crop Evol 57:193–202

    Article  Google Scholar 

  • Bennett SJ (1997) Genetic variation between and within two populations of Trifolium glomeratum (cluster clover) in Western Australia. Aust J Agric Res 48:969–976

    Article  Google Scholar 

  • Berger JD (2007) Ecogeographic and evolutionary approaches to improving adaptation of autumn-sown chickpea (Cicer arietinum L.) to terminal drought: the search for reproductive chilling tolerance. Field Crops Res 104:112–122

    Article  Google Scholar 

  • Berger JD, Turner NC (2007) The ecology of chickpea: evolution, distribution, stresses and adaptation from an agro-climatic perspective. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CABI, Wallingford, pp 47–71

    Chapter  Google Scholar 

  • Berger JD, Turner NC, Siddique KHM, Knights EJ, Brinsmead RB, Mock I, Edmondson C, Khan TN (2004) Genotype by environment studies across Australia reveal the importance of phenology for chickpea (Cicer arietinum L.) improvement. Aust J Agric Res 55:1071–1084

    Article  Google Scholar 

  • Berger JD, Ali M, Basu PS, Chaudhary BD, Chaturvedi SK, Deshmukh PS, Dharmaraj PS, Dwivedi SK, Gangadhar GC, Gaur PM, Kumar J, Pannu RK, Siddique KHM, Singh DN, Singh DP, Singh SJ, Turner NC, Yadav HS, Yadav SS (2006) Genotype by environment studies demonstrate the critical role of phenology in adaptation of chickpea (Cicer arietinum L.) to high and low yielding environments of India. Field Crops Res 98:230–244

    Article  Google Scholar 

  • Berger JD, Adhikari KN, Wilkinson S, Buirchell BJ, Sweetingham MW (2008a) Ecogeography of the Old World Lupins. 1. Ecotypic variation in yellow lupin (Lupineus luteus L.). Aust J Agric Res 59:691–701

    Article  Google Scholar 

  • Berger JD, Speijers J, Shrestha D, Ludwig C, Palta JA, Buirchell B (2008b) Ecogeography of the old world lupins: 2 characterizing the Habitat Range. In: Palta JA , Berger JD (eds) Proceedings of 12th international lupin conference, on lupins for health and wealth. Fremantle, Western Australia

  • Berger JD, Milroy SP, Turner NC, Siddique KHM, Imtiaz M, Malhotra RS (2011) Chickpea evolution has selected for contrasting phenological mechanisms among different habitats. Euphytica. doi:10.1007/s10681-011-0391-4

  • Biggs R, Simons H, Bakkenes M, Scholes RJ, Eickhout B, van Vuuren D, Alkemade R (2008) Scenarios of biodiversity loss in southern Africa in the 21st century. Global Environ Change 18:296–309

    Article  Google Scholar 

  • Bisht IS, Mahajan RK, Patel DP (1998) The use of characterization data to establish the Indian mungbean core collection and assessment of genetic diversity. Genet Resour Crop Evol 45:127–133

    Article  Google Scholar 

  • Blair MW, Díaz LM, Buendía HF, Duque MC (2009) Genetic diversity. Seed size association and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theor Appl Genet 119:955–972

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Chaves A, Tofiño A, Calderón JF, Palacio JD (2010) Extensive diversity and inter-genepool introgression in a world-wide collection of intermediate snap bean accessions. Theor Appl Genet 120:1381–1391

    Article  PubMed  Google Scholar 

  • Breese EL (1989) Regeneration and multiplication of germplasm resources in seed genebanks: the scientific background. International Board of Plant Genetic Resources, Rome

    Google Scholar 

  • Brick MA, Byrne PF, Schwartz HF, Ogg JB, Otto O, Fall AL, Gilbert J (2006) Reaction to three races of Fusarium wilt in the Phaseolus vulgaris core collection. Crop Sci 46:1245–1252

    Article  CAS  Google Scholar 

  • Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Article  Google Scholar 

  • Byrne OM, Hardie DC, Khan TN, Speijers J, Yan G (2008) Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross. Aust J Agric Res 59:854–862

    Article  CAS  Google Scholar 

  • CGIAR (2009) An integrated approach to genetic resources in support of the CGIAR′s mission. A position paper developed by the Inter-Centre Working Group on Genetic Resources. http://www/sgrp.cgiar/

  • Cieslarová J, Smýkal P, Dočkalová Z, Hanáček P, Procházka S, Hýbl M, Griga M (2011) Molecular evidence of genetic erosion in pea (Pisum sativum L.) germplasm after long-term maintenance. Genet Resour Crop Evol 58:439–451

    Google Scholar 

  • Collard BCY, Ades PK, Pang ECK, Brouwer JB, Taylor PWJ (2001) Prospecting for sources of resistance to ascochyta blight in wild Cicer species. Aust Plant Pathol 30:271–276

    Article  Google Scholar 

  • Corander J, Gyllenberg M, Koske T (2007) Random partition models and exchangeability for Bayesian identification of population structure. Bull Math Biol 69:797–815

    Article  PubMed  Google Scholar 

  • Coyne CJ, Grusak MA, Razai L, Baik BK (2005) Variation for seed protein concentration in the USDA Pisum core collection. Pisum Genet 37:5–9

    Google Scholar 

  • Crépon K, Marget P, Peyronnet C, Carrouéet B, Arese P, Duc G (2010) Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Res 115:329–339

    Article  Google Scholar 

  • Cyr PD, Weaver B, Millard MJ, Gardner CA, Bohning MA, Emberland GP, Sinnott QP, Kinard GR, Franco T, Mackay M, Guarino L, Bretting PK (2009) GRIN-Global: an international project to develop a global plant genebank and information management system [abstract]. In: Plant & animal genome XVII: international conference on the status of plant & animal genome research. Poster abstract number 800, p 136

  • de Vicente MC (2004) The evolving role of genebanks in the fast-developing field of molecular genetics. Issues in genetic resources no. XI, August 2004. International Plant Genetic Resources Institute, Rome, Italy

  • de Vilmorin P (1913) Pois ‘Réceptions et excursions’ in Ive conférence internationale de Génétique-Paris 1911. Masson, Paris, p 548

  • Duc G (1997) Faba bean (Vicia faba L.). Field Crops Res 53:99–109

    Article  Google Scholar 

  • Duc G, Bao S, Baum M, Redden B, Sadiki M, Suso MJ, Vishniakova M, Zong X (2009) Diversity maintenance and uses of Vicia faba L. genetic resources. Field Crops Res 115:270–278

    Article  Google Scholar 

  • Durán Y, Pérez de la Vega M (2004) Assessment of genetic variation and species relationships in a collection of Lens using RAPD and ISSR. Spanish J Agric Res 2:538–544

    Google Scholar 

  • Dwivedi SL, Blair MW, Upadhyaya HD, Serraj R, Balaji J, Buhariwalla HK, Ortiz R, Crouch JH (2005) Using genomics to exploit grain legume biodiversity in crop improvement. Plant Breed Rev 26:171–357

    Google Scholar 

  • Dwivedi SL, Upadhyaya HD, Stalker HT, Blair MW, Bertioli DJ, Nielen S, Ortiz R (2008) Enhancing crop gene pools with beneficial traits using wild relatives. Plant Breed Rev 30:179–294

    Article  CAS  Google Scholar 

  • Ehrman T, Cocks PS (1996) Reproductive patterns in annual legume species on an aridity gradient. Vegetatio 122:47–59

    Article  Google Scholar 

  • El Bouhssini M, Street K, Joubi A, Ibrahim Z, Rihawi F (2009) Sources of wheat resistance to Sunn pest, Eurygaster integriceps Puton, in Syria. Genetic Resour Crop Evol 56:1065–1069

    Article  Google Scholar 

  • Enjalbert J, Goldringer I, Paillard S, Brabant P (1999) Molecular markers to study genetic drift and selection in wheat populations. J Expt Bot 50:283–290

    Article  CAS  Google Scholar 

  • FAO/IPGRI (1994) Genebank standards. Food and Agricultural Organization of the United Nations, International Plant Genetic Resources Institute, Rome

  • Fondevilla S, Rubiales D, Moreno MT, Torres AM (2008) Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea. Mol Breed 22:193–200

    Article  CAS  Google Scholar 

  • Frankel OH (1984) Genetic perspective of germplasm conservation. In: Arber W, Limensee K, Peacock WJ, Stralinger P (eds) Genetic manipulations: impact on man and society. Cambridge University Press, Cambridge, pp 161–170

    Google Scholar 

  • Furman BJ (2006) Methodology to establish a composite collection: case study in lentil. Plant Genetic Resour 4:2–12

    Article  CAS  Google Scholar 

  • Gaiji S, Debouck DG (2009) Flujos de germplasma en las Américas: 30 años de distributión de muestras de frijol por parte del Centro Internacional de Agricultura Tropical. Recursos Naturales y Ambiente 53:54–61

    Google Scholar 

  • GCDT (2007) The role of the global crop diversity trust in helping the long term conservation and availability of PGRFA. www.croptrust.org

  • Geda AK, Rastogi NK, Pandey RL, Saxena R (2005) Selection criteria to develop low toxin lines through study on biochemical characters of Khesari dal (Lathyrus sativus L.)—a rich protein food. J Food Sci Technol (Mysore, India) 42:76–82

    Google Scholar 

  • Getahun H, Mekonnen A, TekleHaimanot R, Lambein F (1999) Epidemic of neurolathyrism in Ethiopia. Lancet 354:306–307

    Article  PubMed  CAS  Google Scholar 

  • Goldringer I, Prouin C, Rousset M, Galic N, Bonnin I (2006) Rapid differentiation of experimental populations of wheat for heading time in response to local climatic conditions. Ann Bot 98:805–817

    Article  PubMed  Google Scholar 

  • Goodman MM (1990) Genetic and germplasm stocks worth conserving. J Hered 81:11–16

    PubMed  CAS  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  PubMed  CAS  Google Scholar 

  • Gur A, Zamir D (2004) Unused natural genetic variation can uplift yield barriers in plant breeding. PLoS Biol 2:1610–1615

    Article  CAS  Google Scholar 

  • Guralnick RP, Wieczorek J, Beaman R, Hijmans RJ (2006) BioGeomancer: automated georeferencing to map the world’s biodiversity data. PLoS Biol 4:e381

    Article  PubMed  CAS  Google Scholar 

  • Hamwieh A, Udupa SM, Sarker A, Jung C, Baum M (2009) Development of new microsatellite markers and their application in the analysis of genetic diversity in lentils. Breed Sci 59:77–86

    Article  CAS  Google Scholar 

  • Hayman DS (1983) The physiology of vesicular-arbuscular endomycorrhizal symbiosis. Can J Bot 61:944–963

    Article  Google Scholar 

  • Heywood V, Casas A, Ford-Lloyd B, Kell S, Maxted N (2007) Conservation and sustainable use of crop wild relatives. Agric Ecosyst Environ 124:245–255

    Article  Google Scholar 

  • Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newslett 127:15–19

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hirano R, Jato SA, Kawase M, Kikuchi A, Watanabe KN (2009) Consequences of ex situ conservation on the genetic integrity of germplasm held at different genebanks: a case study of bread wheat collected in Pakistan. Crop Sci 49:2160–2166

    Article  CAS  Google Scholar 

  • Hoey BK, Crowe KR, Jones VM, Polans NO (1996) A phylogenetic analysis of Pisum based on morphological characters, allozyme and RAPD markers. Theor Appl Genet 92:92–100

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report, summary for policy makers. Technical report. http://www.ipcc.ch/ipccreports/ar4-syr.htm

  • IPCC (2008) Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  • IPGRI (1996) Report of the internally commissioned external review of the CGIAR Genebank operations. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Jarvis A, Lane A, Hijmans R (2008) The effect of climate changes on crop wild relatives. Agric Ecosyst Environ 126:13–33

    Article  Google Scholar 

  • Jing R, Johnson R, Seres A, Kiss G, Ambrose MJ, Knox MR, Ellis THN, Flavell A (2007) Gene-based sequence diversity analysis of field pea (Pisum). Genetics 177:2263–2275

    Article  PubMed  CAS  Google Scholar 

  • Jing RC, Vershinin A, Grzebyta J, Shaw P, Smýkal P, Marshall D, Ambrose MJ, Ellis THN, Flavell AJ (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 10:44

    Article  PubMed  CAS  Google Scholar 

  • Jung W, Yu O, Lau SMC, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18:208–212

    Article  PubMed  CAS  Google Scholar 

  • Kaur N, Street K, Mackay M, Yahiaoui N, Keller B (2008) Molecular approaches for characterization and use of natural disease resistance in wheat. Eur J Plant Pathol 121:387–397

    Article  CAS  Google Scholar 

  • Kharkwal MC, Cagirgan MI, Toker C, Shah T, Islam MM, Nakagawa H, Xu X, Si P (2010) Legume mutant varieties for food, feed and environmental benefits. In: 5th International food legumes research conference (IFLRC) & 7th European conference on grain legumes (AEP VII), 26–30 April 2010, Antalya, Turkey, p 196

  • Khoury C, Laliberté B, Guarino L (2010) Trends in ex situ conservation of plant genetic resources: a review of global crop and regional conservation strategies. Genet Resour Crop Evol 57:625–639

    Article  Google Scholar 

  • Kornegay J, Cardona C, Posso CE (1993) Inheritence of resistance to Mexican bean weevil in common bean, determined by bioassay and biochemical tests. Crop Sci 33:589–594

    Article  CAS  Google Scholar 

  • Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992

    Article  PubMed  CAS  Google Scholar 

  • Kwak M, Kami A, Gepts P (2009) The putative mesoamerican domestication center of Phaseolus vulgaris is located in the Lerma–Santiago Basin of Mexico. Crop Sci 49:554–563

    Article  Google Scholar 

  • Le Clerc V, Briard M, Granger J, Delettre J (2003) Genebank biodiversity assessments regarding optimal sample size and seed harvesting techniques for the regeneration of carrot accessions. Biodiv Conserv 12:2227–2336

    Article  Google Scholar 

  • Le Signor C, Dalmais M, Bruaud V, Thompson R, Bendahmane A (2009) High throughput identification of Pisum sativum mutant lines by TILLING: a tool for crop improvement using either forward or reverse genetic approaches. Grain Legumes 52:18–19

    Google Scholar 

  • Liu J, Guan J-P, Xu D-X, Zhang XY, Gu J, Zong X-X (2008) Analysis of genetic diversity and population structure in lentil (Lens culnaris Medik.) germplasm by SSR markers. Acta Agronomica Sinica 34:1901–1909

    Article  CAS  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon W, Naylor R (2008) Prioritizing climate change adaptation need for food security in 2030. Science 319:607–610

    Article  PubMed  CAS  Google Scholar 

  • Logozzo G, Donnoli R, Macaluso L, Papa R, Knüpffer H, Zeuli PS (2007) Analysis of the contribution of Mesoamerican and Andean gene pools to European common bean (Phaseolus vulgaris L.) germplasm and strategies to establish a core collection. Genet Resour Crop Evol 54:1763–1779

    Article  Google Scholar 

  • Mahalakshmi V, Ng Q, Lawson M, Ortiz R (2007) Cowpea (Vigna unguiculata (L.) Walp.) core collection defined by geographical, agronomical and botanical descriptors. Plant Genet Resour 5:113–119

    Article  Google Scholar 

  • Malhotra RS, Singh KB, Vito MD, Greco N, Saxena MC (2002) Registration of ILC 10765 and ILC 10766 chickpea germplasm lines resistant to cyst nematode. Crop Sci 42:1756

    Article  Google Scholar 

  • Mallikarjuna N, Saxena KB (2005) A new cytoplasmic male-sterility system derived from cultivated pigeonpea cytoplasm. Euphytica 142:143–148

    Article  Google Scholar 

  • Mallikarjuna N, Jadhav D, Reddy P (2006) Introgression of Cajanus platycarpus genome into C. cajan. Euphytica 149:161–167

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Sharma HC, Upadhyaya HD (2007) Exploitation of wild relatives of pigeonpea and chickpea for resistance to Helicoverpa armigera. SAT J Agric Res 3:59–62

    Google Scholar 

  • Matzke MA, Scheid OM, Matzke AJM (1999) Rapid structural and epigenetic changes in polyploid and aneuploid genomes. BioEssays 21:761–767

    Article  PubMed  CAS  Google Scholar 

  • Maxted N, Kell SP (2009) Establishment of a global network for the in situ conservation of crop wild relatives: status and needs. FAO Commission on Genetic Resources for Food and Agriculture, Rome, p 266

    Google Scholar 

  • Maxted N, Dulloo E, Ford-Lloyd BV, Iriondo JM, Jarvis A (2008) Gap analysis: a tool for complementary genetic conservation assessment. Divers Distrib 14:1018–1030

    Article  Google Scholar 

  • McCouch S (2004) Diversifying selection in plant breeding. PLoS Biol 2:e347

    Article  PubMed  CAS  Google Scholar 

  • McLaren CG, Bruskiewich RM, Portugal AM, Cosico AB (2005) The international rice information system. A platform for meta-analysis of rice crop data. Plant Physiol 139:637–642

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin JF, Hellmann JJ, Boggs CL, Ehrlich PR (2002) Climate change hasten population extinction. Proc Nat Acad Sci USA 99:6070–6074

    Article  PubMed  CAS  Google Scholar 

  • McPhee KE, Tullu A, Kraft JM, Muehlbauer FJ (1999) Resistance to Fusarium wilt race 2 in the Pisum core collection. J Am Soc Hort Sci 124:28–31

    Google Scholar 

  • Meilleur BA, Hodgkin T (2004) In situ conservation of crop wild relatives: status and trends. Biodivers Conserv 13:663–684

    Article  Google Scholar 

  • Mikic A, Angelova S, Burstin J, Djuric B, Cupina B, Lejeune I, Sabeva M, Vishnyakov M, Duc G (2009) The pea genetic resources of the Balkans to represent the first cultivated peas of Europe. Grain Legumes 52:16–17

    Google Scholar 

  • Motley TJ, Zerega N, Cross H (2006) Darwin′s Harvest. New approaches to the origins, evolution and conservation of crops. Columbia University Press, NY

    Google Scholar 

  • Muehlbauer FJ, Rajesh PN (2008) Chickpea, a common source of protein and starch in the semi-arid tropics. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, New York, pp 171–186

    Chapter  Google Scholar 

  • Nelson MN, Berger JD, Erskine W (2010) Flowering time control in annual legumes: prospects in a changing global climate. CAB reviews: perspectives in agriculture, veterinary science. Nutr Nat Resour 5:14

    Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25

    Article  Google Scholar 

  • Nichols PGH, Cocks PS, Francis CM (2009) Evolution over 16 years in a bulk-hybrid population of subterranean clover (Trifolium subterraneum L.) at two contrasting sites in south-western Australia. Euphytica 169:31–48

    Article  Google Scholar 

  • Ochatt SJ, Benabdelmouna A, Marget P, Aubert G, Moussy F, Pontecaille C, Jacas L (2004) Overcoming hybridization barriers between pea and some of its wild relatives. Euphytica 137:353–359

    Article  CAS  Google Scholar 

  • Padmavati M, Reddy AV (1999) Flavonoid biosynthetic pathway and cereal defense response: an emerging trend in crop biotechnology. Plant Biochem Biotechnol 8:15–20

    CAS  Google Scholar 

  • Pande S, Kishore GK, Upadhyaya HD, Rao JN (2006) Identification of sources of multiple disease resistance in mini core collection of chickpea. Plant Dis 90:1214–1218

    Article  Google Scholar 

  • Parzies HK, Spoor V, Ennos RA (2000) Genetic diversity of barley landrace accessions (Hordeum vulgare ssp vulgare) conserved for different lengths of time in ex situ gene banks. Heredity 84:476–486

    Article  PubMed  CAS  Google Scholar 

  • Pengelli BC, Maass BL (2001) Lablab purpureus (L.) sweet germplasm-diversity, potential use and determination of a core collection of this multipurpose tropical legumes. Genet Resour Crop Evol 48:261–272

    Article  Google Scholar 

  • Penteado MID, de Miera LES, dela Vega MP (1996) Genetic resources of Centrosema spp: genetic changes associated to the handling of an active collection. Genet Resour Crop Evol 43:85–90

    Article  Google Scholar 

  • Pérez-Vega E, Campa A, de la Rosa L, Giraldez R, Ferreira JJ (2009) Genetic diversity in a core collection established from the main bean genebank in Spain. Crop Sci 49:1377–1386

    Article  Google Scholar 

  • Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM, Yoshida S, Parniske M (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131:866–871

    Article  PubMed  CAS  Google Scholar 

  • Piano P, Pecetti L, Carroni AM (1996) Climatic adaptation in subterranean clover populations. Euphytica 92:39–44

    Article  Google Scholar 

  • Porch TG, Blair MW, Lariguet P, Galeano C, Pankhurst CE, Broughton WJ (2009) Generation of a mutant population for TILLING common bean genotype BAT 93. J Am HortSoc 134:348–355

    Google Scholar 

  • Porter LD, Hoheisel G, Coffman VA (2009) Resistance of pea to Sclerotonia sclerotiorum in the Pisum core collection. Plant Pathol 58:52–60

    Article  Google Scholar 

  • Provvidenti R (1990) Inheritance of resistance to pea mosaic virus in Pisum sativum. J Heredity 81:43–45

    Google Scholar 

  • Ramos ML, Huntley JJ, Maleki SJ, Ozias-Akins P (2008) Identification and characterization of a hypoallergenic ortholog of Ara h 2.01. Plant Mol Biol 69:325–335

    Article  PubMed  CAS  Google Scholar 

  • Redden RJ, Basford KE, Kroonenberg PM, Ellis R, Wang S-M, Cao Y-S, Zong X-X, Wang X-M (2009) Variation in adzuki bean (Vigna angularis) germplasm grown in China. Crop Sci 49:771–782

    Article  Google Scholar 

  • Reedy ME, Knapp AD, Lamkey KR (1995) Isozyme allelic frequency changes following maize (Zea mays L.) germplasm regeneration. Maydica 40:269–273

    Google Scholar 

  • Reif JC, Melchinger AE, Frisch M (2005) Genetical and mathematical properties of similarity and dissimilarity coefficients applied in plant breeding and seed bank management. Crop Sci 45:1–7

    Article  Google Scholar 

  • Rogers C, Wen J, Chen R, Giles O (2009) Deletion-based reverse genetics in Medicago truncatula. Plant Physiol 151:1077–1086

    Article  PubMed  CAS  Google Scholar 

  • Sackville HNR, Chorlton KH (1997) Regeneration of accessions in seed collections: a decision guide. Handbook for genebanks no. 5. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Sanders FE, Tinker PB (1973) Phosphate flow into mycorrhizal roots. Pest Sci 4:385–395

    Article  CAS  Google Scholar 

  • Santalla M, De Ron AM, De La Fuente M (2010) Integration of genome and phenotypic scanning gives evidence of genetic structure in Mesoamerican common bean (Phaseolus vulgaris L.) landraces from the southwest of Europe. Theor Appl Genet 120:1635–1651

    Article  PubMed  CAS  Google Scholar 

  • Sanz AM, Gonzalez SG, Syed NH, Suso MJ, Saldaña CC, Flavell AJ (2003) Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers. Mol Genet Genom 278:433–441

    Article  CAS  Google Scholar 

  • Saxena KB, Kumar RV, Dalvi VA, Mallikarjuna N, Gowda CLL, Singh BB, Tikka SBS, Wanjari KB, Pandet LB, Paralkar LM, Patel MK, Shiying B, Xuxiao Z (2005) Hybrid breeding in grain legumes—a success story of pigeonpea. In: Khairwal MC, Jain HK (eds) International food legume research conference. New Delhi, India, pp 18–22

    Google Scholar 

  • Saxena KB, Sultana R, Mallikarjuna N, Saxena RK, Kumar RV, Sawargaonkar SL, Varshney RK (2010) Male sterility systems in pigeonpea and their role in enhancing yield. Euphytica 129:125–134

    Google Scholar 

  • Schindler F (1890) Welches Werthverhaltniss besteht zwishen den Landrassen landwirthschaflicher Kutlurpflanzen und den sogenanneten Zuchtunsrassen? Internationaler lan- und forstwirstchaflicher Congress zu Wiena 1890. Section I: Landwirthschaft. Subsection: Pflanzenbau. Frage 5. Heft 13:19–24

    Google Scholar 

  • Singh KB, Bejiga G, Malhotra RS (1990) Association of some characters with seed yield in chickpea collection. Euphytica 49:83–88

    Article  Google Scholar 

  • Singh S, Gumber RK, Joshi N, Singh K (2005) Introgressions from wild Cicer reticulatum to cultivated chickpea for productivity and disease resistance. Plant Breed 124:477–480

    Article  Google Scholar 

  • Smartt J (1990) Grain legumes. Evolution and genetic resources. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Smýkal P, Hýbl M, Corander J, Jarkovský J, Flavell AJ, Griga M (2008) Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theor Appl Genet 117:413–424

    Article  PubMed  CAS  Google Scholar 

  • Smýkal P, Kenicer G, Flavell AJ, Kosterin O, Ellis NTH, Ambrose MJ (2009a) Morphological and molecular relationships in Pisum L. Grain Legume Mag 52:22–23

    Google Scholar 

  • Smýkal P, Coyne CJ, Ford R, Redden R, Hybl M, Flavell AJ, Warkentin T, Burstin J, Duc G, Ambrose M, Ellis T (2009b) Effort towards a world pea (Pisum sativum L.) germplasm core collection: the case for common markers and data compatibility. Pisum Genet 40:11–15

    Google Scholar 

  • Smýkal P, Kenicer G, Flavell AJ, Corander J, Kosterin O, Redden RJ, Ford R, Coyne CJ, Maxted N, Ambrose MJ, Ellis NTH (2011) Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genet Resour 9:4–18

    Google Scholar 

  • Soengas P, Cartea E, Lema M, Velasco P (2009) Effect of regeneration procedures on the genetic integrity of Brassica oleracea accessions. Mol Breed 23:389–395

    Article  Google Scholar 

  • Spagnoletti-Zeuli PL, Sergio L, Perrino P (1995) Changes in the genetic structure of wheat germplasm accessions during seed rejuvenation. Plant Breed 114:193–198

    Article  Google Scholar 

  • Spooner D, van Treuren R, de Vicente MC (2005) Molecular markers for genebank management. IPGRI technical bulletin no. 10. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Steiner AM, Ruckenbauer P, Goecke E (1997) Maintenance in genebanks, a case study: contaminations observed in the Nurnberg oats of 1831. Genet Resour Crop Evol 44:533–538

    Article  Google Scholar 

  • Street K, Mackay M, Zuev E, Kaul N, El Bouhssini M, Konopka J, Mitrofanova O (2008) Swimming in the genepool—a rational approach to exploiting large genetic resource collections. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) 11th International wheat genetics symposium. Sydney University Press, Sydney, pp 1–4. http://hd1.handle.net/2123/3390

  • Subramanian S, Stacey G, Yu O (2007) Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci 12:282–285

    Article  PubMed  CAS  Google Scholar 

  • Suso MJ, Gilsanz S, Duc G, Marget P, Moreno MT (2006) Germplasm management of faba bean (Vicia faba L.): monitoring intercrossing between accessions with inter-plot barriers. Genet Resour Crop Evol 53:1427–1439

    Article  Google Scholar 

  • SWPGRFA (2009) Draft second report on the state of world plant genetic resources for food and agriculture: commission on genetic resources for food and agriculture (CGRFA-12/09/Inf.rRev.1). Twelth Regular Session, 19–23 Oct 2009, Rome, Italy

  • Tanksley SD, McCouch SR (1997) Seed bank and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Yvonne C et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  PubMed  CAS  Google Scholar 

  • Tikka SBS, Parmar LD, Chauhan RM (1997) First record of cytoplasmic-genic male-sterility system in pigeonpea (Cajanus cajan (L.) Millsp.) through wide hybridization. Gujrat Agri Univ Res J 22:160–162

    Google Scholar 

  • UNEP (2002) United Nations Environment Programme. The Hague ministerial declaration of the conference of parties to the convention on biological diversity

  • Upadhyaya HD (2008) Crop germplasm and wild relatives: a source of novel variation for crop improvement. Korean J Crop Sci 53:12–17

    Google Scholar 

  • Upadhyaya HD, Ortiz R (2001) A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources. Theor Appl Genet 102:1292–1298

    Article  Google Scholar 

  • Upadhyaya HD, Bramel PJ, Singh Sube (2001) Development of a chickpea core collection using geographic distribution and quantitative traits. Crop Sci 41:206–210

    Article  Google Scholar 

  • Upadhyaya HD, Reddy LJ, Gowda CLL, Reddy KN, Singh S (2006) Development of a mini core subset for enhanced and diversified utilization of pigeonpea germplasm resources. Crop Sci 46:2127–2132

    Article  Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Baum M, Varshney RK, Udupa SM, Gowda CLL, Hoisington D, Singh S (2008a) Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biol 8:106

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya HD, Bhattacharjee R, Varshney R, Hoisington D, Reddy KN, Singh S (2008b) Assessment of genetic diversity in pigeonpea using SSR markers. Abstract 657-3. Joint annual meeting, 5–9 Oct 2008, Houston, Texas. http://acs.confex.com/crops/2008am/webprogram/paper40981.html

  • Upadhyaya HD, Dwivedi SL, Gowda CLL, Singh S, Reddy KN (2009) Enhancing the value of plant genetic resources of chickpea, pigeonpea and groundnut. In: Ali M, Kumar S (eds) Milestones in food legume research. Indian Institute of Pulses Research, Army Printing Press, Kanpur, Lucknow, pp 178–205

    Google Scholar 

  • Upadhyaya HD, Reddy KN, Shivali S, Varshney RK, Bhattacharjee R, Singh S, Gowda CLL (2011) Pigeonpea composite collection for enhanced utilization of germplasm in crop improvement programs. Plant Genet Resour Charact Util 9:97–108

    Google Scholar 

  • van Hintum TJL, Van De Wiel CCM, Visser DL, Van Treuren R, Vosman B (2007) The distribution of genetic diversity in a Brassica oleracea genebank collection related to the effects on diversity of regeneration, as measured with AFLPs. Theor Appl Genet 114:777–786

    Article  PubMed  CAS  Google Scholar 

  • Vargas-Vázquez MLP, Muruaga-Martínez JS, Pérez-Herrera P, Gill-Langarica HR, Esquivel G, Martínez-Damaián MA, Rosales-Serna R, Mayek-Pérez N (2008) Morpho-agronomic characterization of the INIFAP core collection of the cultivated form of common bean. Agrociencia (Montecillo) 42:787–797

    Google Scholar 

  • Vershinin AV, Allnutt TR, Knox MR, Ambrose MJ, Ellis THN (2003) Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication. Mol Biol Evol 20:2067–2075

    Article  PubMed  CAS  Google Scholar 

  • von Proskowetz E (1890) Welches Werthverhaltniss besteht zwishen den Landrassen landwirthschaflicher Kutlurpflanzen und den sogenanneten Zuchtunsrassen? Internationaler lan- und forstwirstchaflicher Congress zu Wiena 1890. Section I: Landwirthschaft. Subsection: Pflanzenbau. Frage 5. Heft 13:3–18

    Google Scholar 

  • Wang S, Hu J, Cao Y, Redden RJ, Lawrence P, Islam FM (2001) The comprehensive evaluation and preliminary study on genetic diversity of Chinese adzuki germplasm. J Plant Genet Resour 2:6–11

    Google Scholar 

  • Wang L-X, Chen X-Z, Wang S-H, Liang H, Zhao D, Xu C (2009) Genetic diversity of adzuki bean germplasm resources revealed by SSR markers. Acta Agron Sin 35:1858–1865

    Article  CAS  Google Scholar 

  • Weeden NF (2007) Genetic changes accompanying the domestication of Pisum sativum: is there a common genetic basis to the ‘Domestication syndrome’ for legumes? Ann Bot 100:1017–1025

    Article  PubMed  CAS  Google Scholar 

  • Xu Y-H, Guan JP, Zong X-X (2007) Genetic diversity analysis of cowpea germplasm resources by SSR. Acta Agron Sin 33:1206–1209

    CAS  Google Scholar 

  • Xu HX, Jing T, Tomooka N, Kaga A, Isemura T, Vaughman DA (2008) Genetic diversity of the azuki bean (Vigna vulgaris (Willd.) Ohwi & Ohashi) genepool as assessed by SSR markers. Genome 51:728–738

    Article  PubMed  CAS  Google Scholar 

  • Xu N, Cheng X-Z, Wang L-X, Wang S-H, Liu C-Y, Sun L, Mei L (2009) Screening and application of SSR markers for genetic diversity analysis of Chinese Adzuki bean germplasm resources. Acta Agron Sin 35:219–227

    CAS  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Canaran P, Jurkuta R, Fulton T, Glaubitz J, Buckler E, Doebley J, Gaut B, Goodman M et al (2006) Panzea: a database and resource for molecular and functional diversity in the maize genome. Nucl Acids Res 34:D752–D757

    Article  PubMed  CAS  Google Scholar 

  • Zong X-X, Guan J-P, Wang S-M, Liu Q-C, Redden RR, Ford R (2008a) Genetic diversity and core collection of alien Pisum sativum L. germplasm. Acta Agron Sin 34:1518–1528

    Article  CAS  Google Scholar 

  • Zong X-X, Guan J-P, Wang S-M, Liu Q-C (2008b) Genetic diversity among Chinese pea (Pisum sativum L.) landraces revealed by SSR markers. Acta Agron Sin 34:1330–1338

    CAS  Google Scholar 

  • Zong X-X, Liu X-J, Guan J-P, Wang S-M, Liu Q-C, Paull J-G, Redden R (2009a) Molecular variation among Chinese and global winter faba bean germplasm. Theor Appl Genet 118:971–978

    Article  PubMed  CAS  Google Scholar 

  • Zong X-X, Redden RJ, Liu Q-C, Wang S-M, Guan J-P, Liu J, Xu Y-H, Liu X-J, Gu J, Tan L, Ades P, Ford R (2009b) Analysis of diverse global Pisum sp. collection and comparison to a Chinese local P. sativum collection with microsatellite markers. Theor Appl Genet 118:193–204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Author’s thanks to the anonymous reviewers for making useful suggestions that helped to improve the original submission. Sangam Dwivedi highly appreciates the support and encouragement of William Dar and the ICRISAT library staff for assistance in literature searches and sourcing reprints. Petr Smýkal acknowledges to the Czech Ministry of Education for providing support through project MSM 2678424601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Upadhyaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upadhyaya, H.D., Dwivedi, S.L., Ambrose, M. et al. Legume genetic resources: management, diversity assessment, and utilization in crop improvement. Euphytica 180, 27–47 (2011). https://doi.org/10.1007/s10681-011-0449-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0449-3

Keywords

Navigation