The potential of lentil (Lens culinaris L.) as a whole food for increased selenium, iron, and zinc intake: preliminary results from a 3 year study

Abstract

Micronutrient malnutrition, especially selenium (Se), iron (Fe), and zinc (Zn) deficiency, is a major global health problem. Previous attempts to prevent micronutrient malnutrition through food fortification, supplementation, and enrichment of staple crops has had limited success. Canadian grown lentils are rich in micronutrients Fe (73–90 mg kg−1), Zn (44–54 mg kg−1), Se (425–673 μg kg−1), and have very low concentrations of phytic acid (2.5–4.4 mg g−1). Our preliminary studies using a Caco-2 cell model show that the uptake of Fe from lentils is relatively greater than that of most other staple food crops. Moreover, preliminary results from our human nutrition study in Sri Lanka show an increased trend in blood Se concentration after lentil consumption. This article briefly overviews our previously published results as well as data from international lentil field trials, and describes the potential for biofortified lentil to provide a whole food solution to combat global human micronutrient malnutrition.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Ariza-Nieto M, Blair MW, Welch RM, Glahn RP (2007) Screening of iron bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the caco-2 cell in vitro model. J Agric Food Chem 55:7950–7956

    PubMed  Article  CAS  Google Scholar 

  2. Broadley MR, White PJ, Bryson RJ, Meacham MC, Bowen HC, Johnson SE et al (2006) Biofortification of UK food crops with selenium. Proc Nutr Soc 65:169–181

    PubMed  Article  CAS  Google Scholar 

  3. Clark LC, Combs GF Jr, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL Jr, Park HK, Sanders BB Jr, Smith CL, Taylor JR (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional prevention of cancer study group. JAMA 276:1957–1963

    PubMed  Article  CAS  Google Scholar 

  4. Combs GF Jr (2001) Selenium in global food systems. Br J Nutr 85:517–547

    PubMed  Article  CAS  Google Scholar 

  5. Combs GF Jr, Junxuan Lu (2001) Selenium as a cancer preventive agent. In: Hatfield DolphL, Berry MarlaJ, Gladyshev VadimN (eds) Selenium: its molecular biology and role in human health, 2nd edn. Springer US, New York, pp 205–217

    Google Scholar 

  6. Combs GF Jr, Lu J (2006) Selenium as a cancer preventative agent, chapter 22. In: Hatfield DL, Berry MJ, Gladyshev VN (eds) Selenium: its molecular biology and role in human health. Springer, New York, pp 249–264

    Google Scholar 

  7. Dimitropoulou P, Nayee S, Liu JF, Demetriou L, Van Tongeren M, Hepworth SJ, Muir KR (2008) Dietary zinc intake and brain cancer in adults: a case-control study. Br J Nutr 99:667–673

    PubMed  Article  CAS  Google Scholar 

  8. Ellis DR, Salt DE (2003) Plants, selenium, and human health. Curr Opin Plant Biol 6:273–279

    PubMed  Article  CAS  Google Scholar 

  9. FAOSTAT (2007) http://faostat.fao.org/. Accessed 15 March 2010

  10. Gailer J, Madden S, Burke MF, Denton MB, Aposhian HV (2000) Simultaneous multielement-specific detection of a novel glutathione-arsenic-selenium ion [(GS)2AsSe] by ICP AES after micellar size-exclusion chromatography. Appl Organometal Chem 14:355–363

    Article  CAS  Google Scholar 

  11. Ganther HE (1999) Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase. Carcinogenesis 20:1657–1666

    PubMed  Article  CAS  Google Scholar 

  12. Giray B, Hincal F (2004) Selenium status in Turkey. J Radioanal Nucl Chem 259:447–451

    Article  CAS  Google Scholar 

  13. Glahn RP, Wien EM, Van Campen DR, Miller DD (1996) Caco-2 cell iron uptake from meat and casein digests parallels in vivo studies: use of a novel in vitro method for rapid estimation of iron bioavailability. J Nutr 126:332–339

    PubMed  CAS  Google Scholar 

  14. Haas J, Brownlie T (2001) Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J Nutr 131:676S–690S

    PubMed  CAS  Google Scholar 

  15. HarvestPlus (2010) Breeding crops for better nutrition. http://www.harvestplus.org/. Accessed 20 June 2010

  16. Jackson MI, Combs GF Jr (2008) Selenium and anti-carcinogenesis: underlying mechanisms. Curr Opin Clin Nutr 11:718–726

    Article  CAS  Google Scholar 

  17. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteins. Science 300:1439–1443

    PubMed  Article  CAS  Google Scholar 

  18. Lyons GH, Genc Y, Stangoulis JCR, Palmer LT, Graham RD (2005) Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content. Biol Trace Elem Res 103:155–168

    PubMed  Article  CAS  Google Scholar 

  19. Moghadaszadeh B, Beggs AH (2006) Selenoproteins and their impact on human health through diverse physiological pathways. Physiology 21:307–315

    PubMed  Article  CAS  Google Scholar 

  20. National Academy of Sciences (2000) Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. http://www.nap.edu/catalog.php?record_id=9810. Accessed 15 June 2010

  21. Nikolopoulou D, Grigorakis K, Stasini M, Alexis MN, Iliadis K (2007) Differences in chemical composition of field pea (Pisum sativum) cultivars: effects of cultivation area and year. Food Chem 103:847–852

    Article  CAS  Google Scholar 

  22. Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47:s88–s105

    Article  Google Scholar 

  23. Prom-u-thai C, Glahn RP, Cheng Z, Fukai S, Rerkasem B, Huang L (2009) The bioavailability of iron fortified in whole grain parboiled rice. Food Chem 112:982–986

    Article  CAS  Google Scholar 

  24. Rayman MP (2002) The argument for increasing selenium intake. Proc Nutr Soc 61:203–215

    PubMed  Article  CAS  Google Scholar 

  25. Spallholz JE, Mallory BL, Rhaman MM (2004) Environmental hypothesis: is poor dietary selenium intake an underlying factor for arsenicosis and cancer in Bangladesh and West Bengal, India? Sci Total Environ 323:21–32

    PubMed  Article  CAS  Google Scholar 

  26. Thavarajah D, Vandenberg A, George GN, Pickering IJ (2007) Chemical form of selenium in naturally selenium-rich lentils (Lens culinaris L.) from Saskatchewan. J Agri Food Chem 55:7337–7341

    Article  CAS  Google Scholar 

  27. Thavarajah D, Ruszkowski J, Vandenberg A (2008) High potential for selenium biofortification of lentils (Lens culinaris L.). J Agri Food Chem 56:10747–10753

    Article  CAS  Google Scholar 

  28. Thavarajah D, Thavarajah P, Sarker A, Vandenberg A (2009a) Lentils (Lens culinaris Medikus subsp. culinaris): a whole food for increased iron and zinc intake. J Agri Food Chem 57:5413–5419

    Article  CAS  Google Scholar 

  29. Thavarajah P, Thavarajah D, Vandenberg A (2009b) Low phytic acid lentils (Lens culinaris L.): a potential solution for increased micronutrient bioavailability. J Agri Food Chem 57:9044–9049

    Article  CAS  Google Scholar 

  30. Thavarajah D, Thavarajah P, Sarker A, Materne M, Vandemark G, Shrestha R, Idrissi O, Hacikamiloglu O, Bucak B, Vandenberg A (2010a). A global survey of effects of genotype and environment on selenium concentration in lentils (Lens culinaris L.): implications for nutritional fortification strategies. Food Chem (In Press)

  31. Thavarajah D, Thavarajah P, See CT, Vandenberg A (2010b) Phytic acid and Fe and Zn concentration in lentil (Lens culinaris L.) seeds is influenced by temperature during seed filling period. Food Chem 122:254–259

    Article  CAS  Google Scholar 

  32. United Nations (2010) Millennium development goals report 2010. UN Web Service Section. http://www.un.org/millenniumgoals/. Accessed 10 June 2010

  33. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    PubMed  CAS  Google Scholar 

  34. Wang N, Daun JK (2006) Effects of variety and crude protein content on nutrients and anti-nutrients in lentils (Lens culinaris). Food Chem 95:493–502

    Article  CAS  Google Scholar 

  35. Welch R (2002) The impact of mineral nutrients in food crops on global human health. Plant Soil 247:83–90

    Article  CAS  Google Scholar 

  36. Welch R, Graham RD (2002) Breeding crops for enhanced micronutrient content. Plant Soil 245:205–214

    Article  CAS  Google Scholar 

  37. White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    PubMed  Article  Google Scholar 

  38. World Health Organization (2010) http://www.who.int/nutrition. Accessed 15 July 2010

Download references

Acknowledgments

We thank the Pulse Biofortification research team (Chai-Thiam See, Barry Goetz, Kevin Andal, and Andrew Arndt) at the CDC for technical assistance and Dr. Kofi Agblor for reviewing the manuscript. Support for this research was provided by the Saskatchewan Pulse Growers, Saskatoon, Saskatchewan and the Agriculture Development Fund, Ministry of Agriculture, Saskatchewan, Canada.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dil Thavarajah.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thavarajah, D., Thavarajah, P., Wejesuriya, A. et al. The potential of lentil (Lens culinaris L.) as a whole food for increased selenium, iron, and zinc intake: preliminary results from a 3 year study. Euphytica 180, 123–128 (2011). https://doi.org/10.1007/s10681-011-0365-6

Download citation

Keywords

  • Lentils
  • Biofortification
  • Iron
  • Zinc
  • Selenium
  • Phytic acid