Bown D, Levasseur M, Croy RRD, Boulter D, Gatehouse JA (1985) Sequence of a pseudogene in the legumin gene family of pea (Pisum sativum L.). Nucleic Acid Res 13:4527–4538
PubMed
Article
CAS
Google Scholar
Burstin J, Marget P, Huart M, Moessner A, Mangin B, Duchene C, Desprez B, Munier-Jolain N, Duc G (2007) Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea. Plant Physiol 144:768–781
PubMed
Article
CAS
Google Scholar
Casey R, Domoney C (1999) Pea globulins. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic Publishers, The Netherlands, pp 171–208
Google Scholar
Clemente A, Moreno FJ, Marín-Manzano MC, Jiménez E, Domoney C (2010) The cytotoxic effect of Bowman-Birk isoinhibitors from soybean (Glycine
max) on HT29 human colorectal cancer cells is related to their intrinsic ability to inhibit serine proteases. Mol Nutr Food Res 54:396–405
PubMed
Article
CAS
Google Scholar
Cooper LD, Doss RP, Price R, Peterson K, Oliver JE (2005) Application of Bruchin B to pea pods results in the up-regulation of CYP93C18, a putative isoflavone synthase gene, and an increase in the level of pisatin, an isoflavone phytoalexin. J Exp Bot 56:1229–1237
PubMed
Article
CAS
Google Scholar
Crévieu I, Carré B, Chagneau AM, Quillien L, Guéguen J, Bérot S (1997) Identification of resistant pea (Pisum sativum L.) proteins in the digestive tract of chickens. J Agric Food Chem 45:1295–1300
Article
Google Scholar
Domoney C, Casey R (1985) Measurement of gene number for seed storage proteins in Pisum. Nucleic Acids Res 13:687–699
PubMed
Article
CAS
Google Scholar
Domoney C, Casey R (1990) Another class of vicilin gene in Pisum. Planta 182:39–42
Article
CAS
Google Scholar
Domoney C, Welham T, Sidebottom C (1993) Purification and characterization of Pisum seed trypsin inhibitors. J Exp Bot 44:701–709
Article
CAS
Google Scholar
Domoney C, Welham T, Ellis N, Hellens R (1994) Inheritance of qualitative and quantitative trypsin inhibitor variants in Pisum. Theor Appl Genet 89:387–391
Article
CAS
Google Scholar
Domoney C, Welham T, Ellis N, Mozzanega P, Turner L (2002) Three classes of proteinase inhibitor gene have distinct but overlapping patterns of expression in Pisum sativum plants. Plant Mol Biol 48:319–329
PubMed
Article
CAS
Google Scholar
Ellis THN (1993) The nuclear genome. In: Casey R, Davies DR (eds) Peas: genetics, molecular biology and biotechnology. CAB International, London, pp 13–47
Google Scholar
Ellis THN, Domoney C, Castleton J, Cleary W, Davies DR (1986) Vicilin genes of Pisum. Mol Gen Genet 205:164–169
Article
CAS
Google Scholar
Forster C, North H, Afzal N, Domoney C, Hornostaj A, Robinson DS, Casey R (1999) Molecular analysis of a null mutant for pea (Pisum sativum L.) seed lipoxygenase-2. Plant Mol Biol 39:1209–1220
PubMed
Article
CAS
Google Scholar
Hedemann MS, Welham T, Boisen S, Canibe N, Bilham L, Domoney C (1999) Studies on the biological responses of rats to seed trypsin inhibitors using near-isogenic lines of Pisum sativum L. (pea). J Sci Food Agric 79:1647–1653
Article
CAS
Google Scholar
Hofer J, Turner L, Moreau C, Ambrose M, Isaac P, Butcher S, Weller J, Dupin A, Dalmais M, Le Signor C, Bendahmane A, Ellis N (2009) Tendril-less regulates tendril formation in pea leaves. Plant Cell 21:420–428
PubMed
Article
CAS
Google Scholar
Irzykowska L, Wolko B (2004) Interval mapping of QTLs controlling yield-related traits and seed protein content in Pisum sativum. J Appl Genet 45:297–306
PubMed
Google Scholar
Kaló P, Seres A, Taylor SA, Jakab J, Kevei Z, Kereszt A, Endre G, Ellis THN, Kiss GB (2004) Comparative mapping between Medicago sativa and Pisum sativum. Mol Gen Genomics 272:235–246
Article
Google Scholar
Khuri S, Bakker FT, Dunwell JM (2001) Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol Biol Evol 18:593–605
PubMed
CAS
Google Scholar
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
PubMed
Article
CAS
Google Scholar
Le Gall M, Quillien L, Sève B, Guéguen J, Lallès JP (2007) Weaned piglets display low gastrointestinal digestion of pea (Pisum sativum L.) lectin and albumin pea albumin 2. J Anim Sci 85:2972–2981
PubMed
Article
CAS
Google Scholar
Marcus JP, Goulter KC, Manners JM (2008) Peptide fragments from plant vicilins expressed in Escherichia coli exhibit antimicrobial activity in vitro. Plant Mol Biol Rep 26:75–87
Article
CAS
Google Scholar
Mossé J (1990) Nitrogen to protein conversion factor for ten cereals and six legumes or oilseeds. A reappraisal of its definition and determination. Variation according to species and to seed protein content. J Agric Food Chem 38:18–24
Article
Google Scholar
Muel F, Carrouée B, Grosjean F (1998) Trypsin inhibitor activity of pea cultivars: new data and a proposal strategy for breeding programmes. In: AEP (Association Européenne de recherche sur les Protéagineux) (ed) Proceedings of the Third European Conference on Grain Legumes (Valladolid, Spain), AEP, Paris, pp 164–165
Page D, Aubert G, Duc G, Welham T, Domoney C (2002) Combinatorial variation in coding and promoter sequences of genes at the Tri locus in Pisum sativum accounts for variation in trypsin inhibitor activity in seeds. Mol Genet Genomics 267:359–369
PubMed
Article
CAS
Google Scholar
Page D, Duc G, Lejeune-Hénaut I, Domoney C (2003) Marker-assisted selection of genetic variants for seed trypsin inhibitor content in peas. Pisum Genet 35:19–21
Google Scholar
Poerio E, Carrano L, Garzillo AM, Buonocore V (1989) A trypsin inhibitor from the water-soluble protein fraction of wheat kernel. Phytochem 28:1307–1311
Article
CAS
Google Scholar
Richardson M (1991) Seed storage proteins: the enzyme inhibitors. Methods Plant Biochem 5:259–305
CAS
Google Scholar
Riechman JL, Ratcliffe OJ (2000) A genomic perspective on plant transcription factors. Curr Opin Plant Biol 3:423–434
Article
Google Scholar
Rolletschek H, Borisjuk L, Radchuk R, Miranda M, Heim U, Wobus U, Weber H (2004) Seed-specific expression of a bacterial phosphoenolpyruvate carboxylase in Vicia narbonensis increases protein content and improves carbon economy. Plant Biotech J 2:211–219
Article
CAS
Google Scholar
Rolletschek H, Nguyen TH, Häusler RE, Rutten T, Göbel C, Feussner I, Radchuk R, Tewes A, Claus B, Klukas C, Linemann U, Weber H, Wobus U, Borisjuk L (2007) Antisense inhibition of the plastidial glucose-6-phosphate/phosphate translocator in Vicia seeds shifts cellular differentiation and promotes protein storage. Plant J 51:468–484
PubMed
Article
CAS
Google Scholar
Salgado P, Freire JPB, Ferreira RB, Teixera A, Bento O, Abreu MC, Toullec R, Lallès JP (2003) Immunodetection of legume proteins resistant to small intestinal digestion in weaned piglets. J Sci Food Agric 83:1571–1580
Article
CAS
Google Scholar
Sanders A, Collier R, Trethewy A, Gould G, Sieker R, Tegeder M (2009) AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J 59:540–552
PubMed
Article
CAS
Google Scholar
Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Blade S, Bing D (2004) Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum L.). Euphytica 136:297–306
Article
Google Scholar
Tsubokura Y, Hajika M, Harada K (2006) Molecular characterization of a β-conglycinin deficient soybean. Euphytica 150:249–255
Article
CAS
Google Scholar
Turner SR, Barratt DHP, Casey R (1990) The effect of different alleles at the r locus on the synthesis of seed storage proteins in Pisum sativum. Plant Mol Biol 14:793–803
PubMed
Article
CAS
Google Scholar
Verdier J, Kakar K, Gallardo K, Le Signor C, Aubert G, Schlereth A, Town CD, Udvardi MK, Thompson RD (2008) Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling. Plant Mol Biol 67:567–580
PubMed
Article
CAS
Google Scholar
Vigeolas H, Chinoy C, Zuther E, Blessington B, Geigenberger P, Domoney C (2008) Combined metabolomic and genetic approaches reveal a link between the polyamine pathway and albumin 2 in developing pea seeds. Plant Physiol 146:74–82
PubMed
Article
CAS
Google Scholar
Wang TL, Hedley CL (1993) Genetic and developmental analysis of the seed. In: Casey R, Davies DR (eds) Peas: genetics, molecular biology and biotechnology. CAB International, London, pp 83–120
Google Scholar
Weber H, Rolletschek H, Heim U, Golombek S, Gubatz S, Wobus U (2000) Antisense-inhibition of ADP-glucose pyrophosphorylase in developing seeds of Vicia narbonensis moderately decreases starch but increases protein content and affects seed maturation. Plant J 24:33–43
PubMed
Article
CAS
Google Scholar
Weigelt K, Küster H, Radchuk R, Müller M, Weichert H, Fait A, Fernie AR, Saalbach I, Weber H (2008) Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism, and highlights the importance of mitochondrial metabolism. Plant J 55:909–926
PubMed
Article
CAS
Google Scholar
Weigelt K, Küster H, Rutten T, Fait A, Fernie AR, Miersch O, Wasternack C, Emery RJN, Desel C, Hosein F, Müller M, Saalbach I, Weber H (2009) ADP-glucose pyrophosphorylase-deficient pea embryos reveal specific transcriptional and metabolic changes of carbon-nitrogen metabolism and stress responses. Plant Physiol 149:395–411
PubMed
Article
CAS
Google Scholar
Welham T, Domoney C (2000) Temporal and spatial activity of a promoter from a pea enzyme inhibitor gene and its exploitation for seed quality improvement. Plant Sci 159:289–299
PubMed
Article
CAS
Google Scholar
Welham T, O’Neill M, Johnson S, Wang T, Domoney C (1998) Expression patterns of genes encoding seed trypsin inhibitors in Pisum sativum. Plant Sci 131:13–24
Article
CAS
Google Scholar
Wiseman J, Al-Mazooqi W, Welham T, Domoney C (2003) The apparent ileal digestibility, determined with young broilers, of amino acids in near-isogenic lines of peas (Pisum sativum L.) differing in trypsin inhibitor activity. J Sci Food Agric 83:644–651
Article
CAS
Google Scholar
Wiseman J, Al-Marzooqi W, Hedley C, Wang TL, Welham T, Domoney C (2006) The effects of genetic variation at r, rb and Tri loci in Pisum sativum L. on apparent ileal digestibility of amino acids in young broilers. J Sci Food Agric 86:436–444
Article
CAS
Google Scholar
Zhukov VA, Kuznetsova EV, Ovchinnikova ES, Rychagova TS, Titov VS, Pinaev AG, Borisov AY, Moffet M, Domoney C, Ellis THN, Ratet P, Weeden NF, Tikhonovich IA (2007) Gene-based markers of pea linkage group V for mapping genes related to symbioses. Pisum Genet 39:19–25
Google Scholar