Skip to main content
Log in

Rich allelic variations of Viviparous-1A and their associations with seed dormancy/pre-harvest sprouting of common wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The allelic variations of Vp-1B have been confirmed to have close association with seed dormancy (SD) and pre-harvest sprouting (PHS) of Chinese wheat in previous research, but little was known regarding whether the alleles of two other orthologs of Vp1 on 3AL (Vp-1A) and 3DL (Vp-1D) are also present and related to these traits. In view of this, 11 primer pairs flanking the whole sequences of these two orthologs were designed to investigate their allelic variations. The results identified six alleles of Vp-1A using the primer pair A17-19 among 81 wheat cultivars and advanced lines, which were designated as Vp-1Aa, Vp-1Ab, Vp-1Ac, Vp-1Ad, Vp-1Ae, and Vp-1Af. Except for Vp-1Ac, the other five alleles were proven novel, but no allelic variation was found in Vp-1D. On sequence analysis of alleles of Vp-1A, five deletions were observed, all occurring in the same region holding many TTC repeats. Of the six alleles detected in this study, four (Vp-1Aa, Vp-1Ac, Vp-1Ae, and Vp-1Af) were generally distributed in varieties exhibiting higher average germination index (GI, range 0.46–0.56) and spike sprouting (SS, range 39.6–49.4%); however, the alleles Vp-1Ab and Vp-1Ad were distributed in genotypes carrying higher SD (GI 0.19–0.26) and stronger PHS resistance (SS 12.3–17.2%). On Spearman correlation analysis, the allele Vp-1Ab had significantly negative correlation with GI (−0.479) and SS (−0.542) at the 0.01 level, and the three alleles Vp-1Aa, Vp-1Ac, and Vp-1Ae had significantly positive correlation with GI [0.311 (0.05 level), 0.401 (0.01 level), and 0.294 (0.05 level)] and SS [0.283 (0.05 level), 0.309 (0.05 level), and 0.266 (0.05 level)]. The other alleles, including Vp-1Ad and Vp-1Af, also exhibited correlation, albeit not significant, with these two traits. This negative correlation showed that Vp-1Ab helped to improve SD and PHS tolerance, but Vp-1Aa, Vp-1Ac, and Vp-1Ae appeared to exert the opposite effect. To further confirm the association between alleles of Vp-1A and the two traits, a recombinant inbred line (RIL) population with 157 lines was genotyped using the primer pair A17-19, developed from the cross between Wanxianbaimaizi (Vp-1Ab) and Jing411 (Vp-1Ac). General linear model analysis indicated that variation in Vp-1A had a significant (P < 0.001) association with the two traits, explaining 23.4% of the variation in GI and 16.7% of the variation in SS in the population across three crop seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abecasis GR, Cookson WOC, Cardon LR (2001) The Power to detect linkage disequilibrium with quantitative traits in selected samples. Am J Hum Genet 68:1463–1474

    Article  PubMed  CAS  Google Scholar 

  • Bailey PB, McKibbin RS, Lenton JR, Holdsworth MJ, Flintham JE, Gale MD (1999) Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor Appl Genet 98:281–284

    Article  CAS  Google Scholar 

  • Chang C, Feng JM, Si HQ, Yin B, Zhang HP, Ma CX (2010a) Validating a novel allele of viviparous-1 (Vp-1Bf) associated with high seed dormancy of Chinese wheat landrace, Wanxianbaimaizi. Mol Breed 25:517–525

    Article  CAS  Google Scholar 

  • Chang C, Zhang HP, Feng JM, Yin B, Si HQ, Ma CX (2010b) Identifying alleles of Viviparous-1B associated with pre-harvest sprouting in micro-core collections of Chinese wheat germplasm. Mol Breed 25:481–490

    Article  Google Scholar 

  • Chen CX, Cai B, Bai GH (2008) A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Mol Breed 21:351–358

    Article  CAS  Google Scholar 

  • Elhan SE, Yu JM, Buckler ES (2009) Applications of linkage disequilibrium and association mapping in maize. In: Kriz AL, Larkins BA (eds) Molecular genetic approaches to maize improvement. Springer-Verlag, Berlin Heidelberg. Biotechnol Agric Forestry 63:173–195

    Article  Google Scholar 

  • Flintham JE (2000) Different genetic components control coat imposed and embryo-imposed dormancy in wheat. Seed Sci Res 10:43–50

    Google Scholar 

  • Groos C, Gay G, Perretant MR, Gervais L, Bernard M, Dedryver F, Charmet G (2002) Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white × red grain bread wheat cross. Theor Appl Genet 104:39–47

    Article  PubMed  CAS  Google Scholar 

  • Hong YB, Li SX, Liu HY, Zhou GY, Chen XP, Wen SJ, Liang XQ (2009) Correlation analysis of SSR markers and host resistance to Aspergillus flavus infection in Peanut (Arachis hypogaea L.). Mol Plant Breed 7(2):360–364 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Huang QJ, Ding MM, Zhang XH, Su XH (2007) Association analysis between SSR molecular markers and wood properties of Populus nigra. Scientia Silvae Sinicae 43(2):43–47 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Kang HW, Cho YG, Yoon UH (1998) A rapid DNA extraction method for RFLP and PCR analysis from a single dry seed. Plant Mol Biol Rep 16:1–9

    Article  Google Scholar 

  • Kottearachchi NS, Uchino N, Kato K, Miura H (2006) Increased grain dormancy in white-grained wheat by introgression of pre-harvest sprouting tolerance QTLs. Euphytica 152:421–428

    Article  CAS  Google Scholar 

  • Kulwal PL, Singh R, Balyan HS, Gupta PK (2004) Genetic basis of pre-harvest sprouting tolerance using single-locus and two-locus QTL analyses in bread wheat. Funct Integr Genomics 4:94–101

    Article  PubMed  CAS  Google Scholar 

  • Mares D, Mrva K, Cheong J, Williams K, Watson B, Storlie E, Sutherland M, Zou Y (2005) A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theor Appl Genet 111:1357–1364

    Article  PubMed  CAS  Google Scholar 

  • McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK (1991) The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66:895–905

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Anderson OD (2005) Catalogue of gene symbols for wheat: 2005 Supplement-DNA markers. http://wheat.pw.usda.gov/ggpages/awn/51/TextWles/WGC.html

  • McKibbin RS, Wilkinson MD, Bailey PC, Flintham JE, Andrew LM, Lazzeri PA, Gale MD, Lenton JR, Holdworth MJ (2002) Transcripts of Vp-1 homologues are misspliced in modern wheat and ancestral species. Proc Natl Acad Sci USA 99:10203–10208

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Uchino N, Chono M, Kato K, Miura H (2005) Mapping QTLs for grain dormancy on wheat chromosome 3A and group 4 chromosomes, and their combined effect. Theor Appl Genet 110:1315–1323

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Toyama T (2001) Isolation of a VP1 homologue from wheat and analysis of its expression in embryos of dormant and non-dormant cultivars. J Exp Bot 52:875–876

    Article  PubMed  CAS  Google Scholar 

  • Ogbonnaya FC, Imtiaz M, Ye G, Hearnden PR, Hernandez E, Eastwood RF, Van Ginkel M, Shorter SC, Winchester JM (2008) Genetic and QTL analyses of seed dormancy and pre-harvest sprouting resistance in the wheat germplasm CN10955. Theor Appl Genet 116:891–902

    Article  PubMed  CAS  Google Scholar 

  • Osa M, Kato K, Mori M, Shindo C, Torada A, Miura H (2003) Mapping QTLs for seed dormancy and the Vp1 homologue on chromosome 3A in wheat. Theor Appl Genet 106:1491–1496

    PubMed  CAS  Google Scholar 

  • Roy JK, Prasad M, Varshney RK, Balyan HS, Blake TK, Dhaliwal HS, Singh H, Edwards KJ, Gupta PK (1999) Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with pre-harvest sprouting tolerance. Theor Appl Genet 99:336–340

    Article  Google Scholar 

  • Torada A, Amano Y (2002) Effect of seed coat color on seed dormancy in different environments. Euphytica 126:99–105

    Article  CAS  Google Scholar 

  • Walker–Simmons MK (1988) Enhancement of ABA responsiveness in wheat embryos at higher temperature. Plant Cell Environ 11:769–775

    Article  Google Scholar 

  • Xia LQ, Yang Y, Ma YZ, Chen XM, He ZH, Röder MS, Jones HD, Shewry PR (2009) What can the Viviparous-1 gene tell us about wheat pre-harvest sprouting? Euphytica 168:385–394

    Article  CAS  Google Scholar 

  • Xiao SH, Yan CS, Zhang HP, Sun GZ (2004) Studies on preharvest sprouting of wheat. China Press of Agricultural Science and Technology, China, pp 266–292

    Google Scholar 

  • Yang Y, Zhao XL, Xia LQ, Chen XM, Xia XC, Yu Z, He ZH, Röder M (2007) Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats. Theor Appl Genet 115:971–980

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Dr. Shi-He Xiao for kindly providing 21 Chinese landraces and a RIL population. The work was supported by grants from the National Natural Science Foundation of China (31000705), Modern Agricultural Technical System (MATS), National Key Technologies R and D Program (2009BADA6B00), Key Youth Fund of the President of Anhui Agricultural University, and Youth Fund of Anhui Agricultural University (2009zr22).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Ping Zhang or Chuan-Xi Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, C., Zhang, HP., Zhao, QX. et al. Rich allelic variations of Viviparous-1A and their associations with seed dormancy/pre-harvest sprouting of common wheat. Euphytica 179, 343–353 (2011). https://doi.org/10.1007/s10681-011-0348-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0348-7

Keywords

Navigation