Skip to main content
Log in

Characterization of resistance gene analogs from Gossypium arboreum and their evolutionary relationships with homologs from tetraploid cottons

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Four cotton species (genus Gossypium) produce spinable fiber. The two diploid species of Asiatic origin, Gossypium arboreum and G. herbaceum, have been largely replaced by G. hirsutum. However, these diploid species are potentially a rich source of genes for the improvement of G. hrisutum, particularly in terms of providing resistance against biotic and abiotic stresses. As a first step towards understanding the mechanisms of resistance in cotton, we designed 24 non-degenerate primers based on resistance gene analogs (RGAs) cloned from G. hirsutum for screening a number of cotton species with the A and D genomes. Most of these RGAs are conserved on the A genome (G. arboreum), suggesting a bias towards this genome. The amplified RGAs from G. arboreum were cloned and their nucleotide and amino acid sequences compared with RGA sequences available in public databases. The majority of the RGAs identified were homologous to those isolated from G. hirsutum and G. barbadense, but their diversity was greater than expected at both the nucleotide and amino acid levels. These RGAs provide useful tools for the identification of full-length resistance genes from bacterial artificial chromosome and cDNA libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aarts MG, Hekkert B, Holub EB, Beynon JL, Stiekema WJ, Pereira A (1998) Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant Microbe Interact 11:251–258

    Article  PubMed  CAS  Google Scholar 

  • Anja H, Thomas D (2007) Molecular characterization of NBS-LRR-RGAs in the rose genome. Physiol Plant 129:775–786

    Article  Google Scholar 

  • Dilbirligi M, Gill KS (2003) Identification and analysis of expressed resistance gene sequences in wheat. Plant Mol Biol 53:771–787

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ellis J, Dodds P, Pryor T (2000) Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 3:278–284

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Guo W, Wang L, Zhang T (2006) Isolation and characterization of resistance and defense gene analogs in cotton (Gossypium barbadense L.). Sci China C Life Sci 49:530–542

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing RDR, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl J, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JD (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607

    Article  PubMed  CAS  Google Scholar 

  • He L, Du C, Covaleda L, Xu Z, Robinson AF, Yu JZ, Kohel RJ, Zhang HB (2004) Cloning, characterization, and evolution of the NBS-LRR-encoding resistance gene analogue family in polyploid cotton (Gossypium hirsutum L.). Mol Plant Microbe Interact 17:1234–1241

    Article  PubMed  CAS  Google Scholar 

  • Hinchliffe DJ, Lu Y, Potenza C, Segupta-Gopalan C, Cantrell RG, Zhang J (2005) Resistance gene analogue markers are mapped to homeologous chromosomes in cultivated tetraploid cotton. Theor Appl Genet 110:1074–1085

    Article  PubMed  CAS  Google Scholar 

  • Huettel B, Santra D, Muehlbauer J, Kahl G (2002) Resistance gene analogues of chickpea (Cicer arietinum L.): isolation, genetic mapping and association with a Fusarium resistance gene cluster. Theor Appl Genet 105:479–490

    Article  PubMed  CAS  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  PubMed  CAS  Google Scholar 

  • Kaloshian I, Lange HW, Williamson VMA (1995) An aphid-resistance locus is tightly linked to the nematode-resistance gene, Mi, in tomato. Proc Natl Acad Sci USA 92:622–625

    Article  PubMed  CAS  Google Scholar 

  • Kanazin V, Marek LF, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93:11746–11750

    Article  PubMed  CAS  Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330

    Article  PubMed  CAS  Google Scholar 

  • Lopez CE, Zuluaga AP, Cooke R, Delseny M, Tohme J, Verdier V (2003) Isolation of resistance gene candidates (RGCs) and characterization of an RGC cluster in cassava. Mol Genet Genomics 269:658–671

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  PubMed  CAS  Google Scholar 

  • Monosi B, Wisser RJ, Pennill L, Hulbert SH (2004) Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet 109:1434–1447

    Article  PubMed  CAS  Google Scholar 

  • Naik S, Hampson C, Gasic K, Bakkeren G, Korban SS (2006) Development and linkage mapping of E-STS and RGA markers for functional gene homologues in apple. Genome 49:959–968

    Article  PubMed  CAS  Google Scholar 

  • Naranyanan SS, Singh P (1994) Resistance to Haliothis and other serious pests in Gossypium species. A review. Indian Soci Cotton Improv J 19:10–24

    Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Pan Q, Liu YS, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155:309–322

    PubMed  CAS  Google Scholar 

  • Pei X, Li S, Jiang Y, Zhang Y, Wang Z, Jia S (2007) Isolation, characterization and phylogenetic analysis of the resistance gene analogues (RGAs) in banana (Musa spp.). Plant Sci 172:1166–1174

    Article  CAS  Google Scholar 

  • Ramalingam J, Vera Cruz CM, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Hulbert SH, Leach JE, Leung H (2003) Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol Plant Microbe Interact 16:14–24

    Article  PubMed  CAS  Google Scholar 

  • Shen KA, Meyers BC, Islam-Faridi MN, Chin DB, Stelly DM, Michelmore RW (1998) Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microbe Interact 11:815–823

    Article  PubMed  CAS  Google Scholar 

  • Soriano JM, Vilanova S, Romero C, Llacer G, Badenes ML (2005) Characterization and mapping of NBS-LRR resistance gene analogs in apricot (Prunus armeniaca L.). Theor Appl Genet 110:980–989

    Article  PubMed  CAS  Google Scholar 

  • Tan H, Callahan FE, Zhang XD, Karaca M, Saha S, Jenkins JN, Creech RG, Ma DP (2003) Identification of resistance gene analogs in cotton (Gossypium hirsutum L.). Euphytica 134:1–7

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface; flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tian Y, Fan L, Thurau T, Jung C, Cai D (2004) The absence of TIR-type resistance gene analogues in the sugar beet (Beta vulgaris L.) genome. J Mol Evol 58:40–53

    Article  PubMed  CAS  Google Scholar 

  • Traut TW (1994) The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide binding-sites. Eur J Biochem 222:9–19

    Article  PubMed  CAS  Google Scholar 

  • Xiao WK, Xu ML, Zhao JR, Wang FG, Li JS, Dai JR (2006) Genome-wide isolation of resistance gene analogs in maize (Zea mays L.). Theor Appl Genet 113:63–72

    Article  CAS  Google Scholar 

  • Zhang J, Yuan Y, Niu C, Hinchliffe DJ, Lu Y, Shuxun Y, Percy RG, Ulloa M, Cantrell RG (2007) AFLP-RGA markers in comparison with RGA and AFLP in cultivated tetraploid cotton. Crop Sci 47:180–187

    Article  CAS  Google Scholar 

  • Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics 271:402–415

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Cannon SB, Young ND, Cook DR (2002) Phylogeny and genomic organization of the TIR and non-tIR NBS-LRR resistance gene family in Medicago truncatula. Mol Plant Microbe Interact 15:529–539

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Rob W. Briddon for his critical reading of the manuscript. MTA was supported by PhD fellowships from the Higher Education Commission (HEC), Government of Pakistan. The authors are grateful for the support of NIBGE in conducting this study. Funding was provided by the Ministry of Science and Technology (MoST) and the Ministry of Food, Agriculture (MINFA), Government of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Mansoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azhar, M.T., Amin, I., Bashir, A. et al. Characterization of resistance gene analogs from Gossypium arboreum and their evolutionary relationships with homologs from tetraploid cottons. Euphytica 178, 351–362 (2011). https://doi.org/10.1007/s10681-010-0310-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0310-0

Keywords

Profiles

  1. Imran Amin