Skip to main content
Log in

Successful induction of trigenomic hexaploid Brassica from a triploid hybrid of B. napus L. and B. nigra (L.) Koch

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A triploid hybrid with an ABC genome constitution, produced from an interspecific cross between Brassica napus (AACC genome) and B. nigra (BB genome), was used as source material for chromosome doubling. Two approaches were undertaken for the production of hexaploids: firstly, by self-pollination and open-pollination of the triploid hybrid; and secondly, by application of colchicine to axillary meristems of triploid plants. Sixteen seeds were harvested from triploid plants and two seedlings were confirmed to be hexaploids with 54 chromosomes. Pollen viability increased from 13% in triploids to a maximum of 49% in hexaploids. Petal length increased from 1.3 cm (triploid) to 1.9 cm and 1.8 cm in the two hexaploids and longest stamen length increased from 0.9 cm (triploid) to 1.1 cm in the hexaploids. Pollen grains were longer in hexaploids (43.7 and 46.3 μm) compared to the triploid (25.4 μm). A few aneuploid offsprings were also observed, with chromosome number ranging from 34 to 48. This study shows that trigenomic hexaploids can be produced in Brassica through interspecific hybridisation of B. napus and B. nigra followed by colchicine treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraha E, Klíma M, Vyvadilová M, Bechyn M (2008) Effectiveness of selected antimitotic agents in microspore culture for Brassica carinata doubled haploid production. Agric Trop et Subtrop 41:137–149

    Google Scholar 

  • Adamowski EV, Pagliarini MS, Valle CB (2008) Meiotic behavior in three interspecific three-way hybrids between Brachiaria ruzizensis and B. brizantha (Poaceae: Paniceae). J Genet 87:33–38

    Article  PubMed  Google Scholar 

  • Altmann T, Damm B, Frommer WB, Martin T, Morris PC, Schweizer D, Willmitzer L, Schmidt R (1994) Easy determination of ploidy level in Arabidopsis thaliana plants by means of pollen size measurement. Plant Cell Rep 13:652–656

    Article  Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New York

    Google Scholar 

  • Barnabás B, Obert B, Kovács G (1999) Colchicine, an efficient genome-doubling agent for maize (Zea mays L.) microspores cultured in anthero. Plant Cell Rep 18:858–862

    Article  Google Scholar 

  • Benavente E, Cifuentes M, Dusautoir JC, David J (2008) The use of cytogenetic tools for studies in the crop-to-wild gene transfer scenario. Cytogenet Genome Res 120:384–395

    Article  CAS  PubMed  Google Scholar 

  • Burton TL, Husband BC (2001) Fecundity and offspring ploidy in matings among diploid, triploid and tetraploid Chamerion angustifolium (Onagraceae): consequences for tetraploid establishment. Heredity 87:573–582

    Article  CAS  PubMed  Google Scholar 

  • Chiang BY, Grant WF, Chiang MS (1978) Transfer of resistance to race 2 of Plasmodiophora brassicae from Brassica napus to cabbage (B. oleracea var. capitata). II. Meiosis in the interspecific hybrids between B. napus and 2x and 4x cabbage. Euphytica 27:81–93

    Article  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nature 6:836–846

    CAS  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 29:1862–1866

    Article  Google Scholar 

  • Duke JA (1983) Handbook of energy crops. Center for new crops and plant products, Purdue University. http://www.hort.purdue.edu/newcrop/duke_energy/Brassica_nigra.html. Accessed 28 Dec 2006

  • Ellneskog-Staam P, Merker A (2001) Genome composition, stability and fertility of hexaploid alloploids between Triticum turgidum var. carthlicum and Leymus racernosus. Hereditas 134:79–84

    Article  CAS  PubMed  Google Scholar 

  • Ford JH, Schultz CJ, Correll AT (1988) Chromosome elimination in micronuclei: a common cause of hypoploidy. Am J Hum Genet 43:733–740

    CAS  PubMed  Google Scholar 

  • Gland A (1981) Doubling chromosomes in interspecific hybrids by colchicine treatment. Cruciferae Newslett 6:20–22

    Google Scholar 

  • Guedes-Pinto H, Darvey N, Carnide VP (1996) Developments in plant breeding Triticale: today and tomorrow. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Guzy MR, Ehdaie B, Waines JG (1989) Yield and its components in diploid, tetraploid and hexaploid wheats in diverse environments. Ann Bot 64:635–642

    Google Scholar 

  • Hamill SD, Smith MK, Dodd WA (1992) In vitro induction of banana autotetraploids by colchicine treatment of micropropagated diploids. Aust J Bot 40:887–896

    Article  CAS  Google Scholar 

  • Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO, Monod H, Chevre AM (2003) PrBn, a major gene controlling homeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164:645–653

    CAS  PubMed  Google Scholar 

  • Johnstone FE (1939) Chromosome doubling in potatoes induced by colchicine treatment. Am J Potato Res 16:288–304

    Article  CAS  Google Scholar 

  • Koch WDJ (2004) Black mustard. Plants for a future. http://www.pfaf.org/database/plants.php? Brassica+nigra. Accessed 5 Jan 2007

  • Lage J, Trethowan RM (2008) CIMMYT’s use of synthetic hexaploid wheat in breeding for adaptation to rainfed environments globally. Aust J Agric Res 59:461–469

    Article  Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploidy plants. Science 320:481–483

    Article  CAS  PubMed  Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York

    Google Scholar 

  • Li Z, Liu HL, Luo P (1995) Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor Appl Genet 91:131–136

    Google Scholar 

  • Li M, Qian W, Meng J, Li Z (2004) Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization. Chromosome Res 12:417–426

    Article  PubMed  Google Scholar 

  • Lichtenzveig J, Abbo S, Nerd A, Tel-Zur N, Mizrahi Y (2000) Cytology and mating systems in the climbing cacti Hylocereus and Selenicereus. Am J Bot 87:1058–1065

    Article  PubMed  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  CAS  PubMed  Google Scholar 

  • Meng JL, Shi S, Li G, Li Z, Qu X (1998) The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica 103:329–333

    Article  Google Scholar 

  • Nelson MN, Lydiate D (2006) New evidence from Sinapis alba L. for ancestral triplication in a crucifer genome. Genome 49:230–238

    Article  CAS  PubMed  Google Scholar 

  • Nelson M, Mason A, Castello M-C, Thomson L, Yan G, Cowling W (2009) Microspore culture preferentially selects unreduced (2n) gametes from an interspecific hybrid of Brassica napus L. × Brassica carinata Braun. Theor Appl Genet 119:497–505

    Article  PubMed  Google Scholar 

  • Nicolas SD, Leflon M, Liu Z, Eber F, Chelysheva L, Coriton O, Chèvre AM, Jenczewski E (2008) Chromosome ‘speed dating’ during meiosis of polyploid Brassica hybrids and haploids. Cytogenet Genome Res 120:331–338

    Article  CAS  PubMed  Google Scholar 

  • Olsson G (1960) Species crosses within the genus Brassica II. Artificial Brassica napus L. Hereditas 46:351–386

    Article  Google Scholar 

  • Porter PM, LeGare DG (2006) Canola. Varietal trial results. Minnesota Agricultural Experiment Station, University of Minnesota. http://www.maes.umn.edu/06VarietalTrials/canola.pdf. Accessed 8 Jan 2006

  • Pradhan A, Plummer JA, Nelson MN, Cowling WA, Yan G (2010) Trigenomic hybrids from interspecific crosses between Brassica napus and B. nigra. Crop Pasture Sci 61:464–474

    Article  Google Scholar 

  • Qian W, Chen X, Fu D, Zou J, Meng J (2005) Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theor Appl Genet 110:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Rahman MH (2001) Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed 120:463–472

    Article  Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 13:713–715

    Article  Google Scholar 

  • Saisingtong S, Schmid JE, Stamp P, Buter B (1996) Colchicine mediated chromosome doubling during anther culture of maize (Zea mays L). Theor Appl Genet 92:1017–1023

    Article  CAS  Google Scholar 

  • Sears ER, Okamoto M (1958) Intergenomic chromosome relationships in hexaploid wheat. In: Proc 10th Int Cong Genet, vol 2, pp 258–259

  • Shahriari-Ahmadi F, Dehghan E, Farsi M, Azizi M (2008) Tetraploid induction of Hyoscyamus muticus L. using colchicine treatment. Pak J Biol Sci 11:2653–2659

    Article  Google Scholar 

  • Sjödin C, Glimelius K (1989) Brassica naponigra, a somatic hybrid resistant to Phoma lingam. Theor Appl Genet 77:651–656

    Google Scholar 

  • Srivastava HK, Sarkissian IV (1970) Comparative studies of functions of mitochondria from a polyploid series of wheat. Genetics 66:497–503

    CAS  PubMed  Google Scholar 

  • Takashima H, Hasegawa H, Nakamura A (1995) A simple method for chromosome doubling in tobacco anther culture. Breed Sci 45:107–110

    Google Scholar 

  • Tambong JT, Sapra VT, Garton S (1998) In vitro induction of tetraploids in colchicine-treated cocoyam plantlets. Euphytica 104:191–197

    Article  CAS  Google Scholar 

  • Tel-Zur N, Abbo S, Mizrahi Y (2005) Cytogenetics of semi-fertile triploid and aneuploid intergeneric vine cacti hybrids. J Hered 96:124–131

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya T, Larter EN (1971) Further results on chromosome stability of hexaploid triticale. Euphytica 20:591–596

    Google Scholar 

  • U N (1935) Genome-analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Yan G, Nelson M, Pradhan A, Mason A, Weerakoon SR, Si P, Plummer J and Cowling W (2009) Progress towards the creation of trigenomic Brassica hexaploid populations. 14th Australasian Plant Breeding Conference/11th SABRAO Conference, Cairns, Australia. (To be published in SABRAO J Breed Genet, vol 41)

  • Zhao J, Simmonds DH, Newcomb W (1996) High frequency production of doubled haploid plants of Brassica napus cv. Topas derived from colchicine-induced microspore embryogenesis without heat shock. Plant Cell Rep 15:668–671

    Article  CAS  Google Scholar 

  • Zou J, Zhu J, Huang S, Tian E, Xiao Y, Fu D, Tu J, Fu T, Meng J (2010) Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theor Appl Genet 120:283–290

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by Co-operative Bulk Handling Pty Ltd and the Faculty of Natural and Agricultural Sciences at The University of Western Australia, and UPA (University Postgraduate Award) scholarship to Aneeta Pradhan. We thank Winthrop Professor Kadambot Siddique for valuable support; Dr MarieClaire Castello, Dr Chhaya Atri, Dr Made Pharmawati and Cui Cheng for technical help and Damber Bahadur Shrestha for his help with the statistical analysis using SAS 9.2 software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guijun Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradhan, A., Plummer, J.A., Nelson, M.N. et al. Successful induction of trigenomic hexaploid Brassica from a triploid hybrid of B. napus L. and B. nigra (L.) Koch. Euphytica 176, 87–98 (2010). https://doi.org/10.1007/s10681-010-0218-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0218-8

Keywords

Navigation