Skip to main content
Log in

Population genetics of self-incompatibility and developing self-compatible genotypes in niger (Guizotia abyssinica)

  • Published:
Euphytica Aims and scope Submit manuscript

An Erratum to this article was published on 23 July 2010

An Erratum to this article was published on 23 July 2010

Abstract

Niger (Guizotia abyssinica (L. f.) Cass. (Asteraceae) is a strictly self-incompatible crop species with a sporophytic self-incompatibility mechanism. This characteristic presents a number of difficulties in plant improvement programs. The objective of this study was to determine the number and distribution of S-alleles in Ethiopian niger populations and to identify and develop self-compatible genotypes with various associated advantages. Several aspects of self-incompatibility in niger were compared in self- and cross-pollination experiments in which seed-set was considered to be a measure of compatibility. Our results indicate the presence of a minimum of ten self-incompatibility alleles and one self-compatibility allele at the S-locus in niger. Most of these alleles behave differently in the pollen and pistil. About two-thirds of the allelic interactions in both the pollen and pistil were dominant/recessive, and one-third were codominant. The reciprocal cross-pollinations (RCPs) resulted in progeny with similar levels of compatibility within and among populations because of a wide distribution of S-alleles in the populations and, consequently, low population differentiation at the S-locus. An analysis of molecular variance (AMOVA) revealed that only 2% of the total genetic variation at the S-locus differentiates the populations. In conclusion, self-compatible genotypes from the Ethiopian niger gene pool have been identified and developed for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bekele E, Geleta M, Dagne K, Jones AL, Barnes I, Bradman N, Thomas MG (2007) Molecular phylogeny of genus Guizotia (Asteraceae) using DNA sequences derived from ITS. Genet Resour Crop Evol 54:1419–1427. doi:10.1007/s10722-006-9126-0

    Article  CAS  Google Scholar 

  • Brennan AC, Harris SA, Tabah DA, Hiscock SJ (2002) The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae) I: S allele diversity in a natural population. Heredity 89:430–438. doi:10.1038/sj.hdy.6800159

    Article  CAS  PubMed  Google Scholar 

  • Brennan AB, Harris SA, Hiscock SJ (2006) The population genetics of sporophytic self-incompatibility in Senecio Squalidus L. (Asteraceae): the number, frequency, and dominance interactions of S alleles across its British range. Evolution 60:213–224. doi:10.1554/05-231.1

    CAS  PubMed  Google Scholar 

  • Carafa AM, Carratu G (1997) Stigma treatment with saline solutions: a new method to overcome self-incompatibility in Brassica oleracea L. J Hortic Sci 72:531–535

    Google Scholar 

  • Castric V, Vekemans X (2004) Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances. Mol Ecol 13:2873–2889. doi:10.1111/j.1365-294X.2004.02267.x

    Article  CAS  PubMed  Google Scholar 

  • Franklin-Tong VE, Franklin FCH (2003a) Gametophytic self incompatibility inhibits pollen tube growth using different mechanisms. Trends Plant Sci 8:598–605. doi:10.1016/j.tplants.2003.10.008

    Article  CAS  PubMed  Google Scholar 

  • Franklin-Tong VE, Franklin FCH (2003b) The different mechanisms of gametophytic self-incompatibility. Philos Trans R Soc B 358:1025–1032. doi:10.1098/rstb.2003.1287

    Article  CAS  Google Scholar 

  • Geleta M, Bryngelsson T (2009) Inter simple sequence repeat (ISSR) based analysis of genetic diversity of Lobelia rhynchopetalum (Campanulaceae). Hereditas 146:122–130. doi:10.1111/j.1601-5223.2009.02111.x

    Article  PubMed  Google Scholar 

  • Geleta M, Asfaw Z, Bekele E, Teshome A (2002) Edible oil crops and their integration with the major cereals in North Shewa and South Wello, central highlands of Ethiopia: an ethnobotanical perspective. Hereditas 137:29–40

    Article  PubMed  Google Scholar 

  • Geleta M, Bryngelsson T, Bekele E, Dagne K (2007) Genetic diversity of Guizotia abyssinica (L. f.) Cass. (Asteraceae) from Ethiopia as revealed by random amplified polymorphic DNA (RAPD). Genet Resour Crop Evol 54:601–614. doi:10.1007/s10722-006-0018-0

    Article  Google Scholar 

  • Geleta M, Bryngelsson T, Bekele E, Dagne K (2008) Assessment of genetic diversity of Guizotia abyssinica (L.F.) Cass. (Asteraceae) from Ethiopia using amplified fragment length polymorphism (AFLP). Plant Genet Resour 6:41–51. doi:10.1017/S1479262108913903

    Article  CAS  Google Scholar 

  • Getinet A, Sharma SM (1996) Niger (Guizotia abyssinica (L.f.) Cass. Promoting the conservation and use of underutilized and neglected crops. Institute of Plant Genetics and Crop Plant Research/International Plant Genetic Resources Institute, Gatersleben/Rome

    Google Scholar 

  • Godt MJW, Hamrick JL (1995) The mating system of Liatris helleri (Asteraceae), a threatened plant species. Heredity 75:398–404. doi:10.1038/hdy.1995.152

    Article  Google Scholar 

  • Hatakeyama K, Watanabe M, Takasaki T, Ojima K, Hinata K (1998) Dominance relationships between S-alleles in self-incompatible Brassica campestris L. Heredity 80:241–247. doi:10.1046/j.1365-2540.1998.00295.x

    Article  Google Scholar 

  • Hiscock SJ (2000) Genetic control of self-incompatibility in Senecio squalidus L. (Asteraceae): a successful colonizing species. Heredity 85:10–19. doi:10.1046/j.1365-2540.2000.00692.x

    Article  PubMed  Google Scholar 

  • Hiscock SJ, McInnis SM (2003a) Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond. Trends Plant Sci 8:606–613. doi:10.1016/j.tplants.2003.10.007

    Article  CAS  PubMed  Google Scholar 

  • Hiscock SJ, McInnis SM (2003b) The diversity of self-incompatibility systems in flowering plants. Plant Biol 5:23–32. doi:10.1055/s-2003-37981

    Article  CAS  Google Scholar 

  • Kandel HJ, Porter PM, Johnson BL, Henson RA, Hanson BK, Weisberg S, LeGare DG (2004) Plant population influences niger seed yield in the Northern Great Plains. Crop Sci 44:190–197

    Article  Google Scholar 

  • Kowyama Y, Takahasi H, Muraoka K, Tani T, Hara K, Shiotani I (1994) Number, frequency and dominance relationships of S-alleles in diploid Ipomoea trifida. Heredity 73:275–283. doi:10.1038/hdy.1994.134

    Article  Google Scholar 

  • Kusaba M, Tung C-W, Nasrallah ME, Nasrallah JB (2002) Monoallelic expression and dominance interactions in anthers of self-incompatible Arabidopsis lyrata. Plant Physiol 128:17–20. doi:10.1104/pp.010790

    Article  CAS  PubMed  Google Scholar 

  • Levin DA (1996) The evolutionary significance of pseudo-self-fertility. Am Nat 148:321–332

    Article  Google Scholar 

  • Mable BK, Schierup MH, Charlesworth D (2003) Estimating the number, frequency, and dominance of S-alleles in a natural population of Arabidopsis lyrata (Brassicaceae) with sporophytic control of self-incompatibility. Heredity 90:422–431. doi:10.1038/sj.hdy.6800261

    Article  CAS  PubMed  Google Scholar 

  • McCubbin AG, Kao T-H (2000) Molecular recognition and response in pollen and pistil interactions. Annu Rev Cell Dev Biol 16:333–364

    Article  CAS  PubMed  Google Scholar 

  • Murthy HN, Hiremath SC, Salimath SS (1993) Origin, evolution and genome differentiation in Guizotia abyssinica and its wild species. Theor Appl Genet 87:587–592

    Article  Google Scholar 

  • Nemomissa S, Bekele E, Dagne K (1999) Self-incompatibility system in Ethiopian populations of Guizotia abyssinica (L.f.) Cass. (niger). Sinet: Ethiop J Sci 22:67–88

    Google Scholar 

  • Paxman GJ (1963) The maximum likelihood estimation of the number of self-sterility alleles in a population. Genetics 48:1029–1032

    CAS  PubMed  Google Scholar 

  • Petros Y, Merker A, Zeleke H (2007) Analysis of genetic diversity of Guizotia abyssinica from Ethiopia using inter simple sequence repeat markers. Hereditas 144:18–24. doi:10.1111/j.2007.0018-0661.01969.x

    Article  PubMed  Google Scholar 

  • Petros Y, Carlsson A, Stymne S, Zeleke H, Ann-Sofie F, Arnulf M (2009) Developing high oleic acid Guizotia abyssinica (L.f.) Cass. by plant breeding. Plant Breed 128:691–695. doi:10.1111/j.1439-0523.2009.01629.x

    Article  CAS  Google Scholar 

  • Prasad V (1990) Pollen tube growth and site of incompatibility reactions in niger (Guizotia abyssinica Cass.). Curr Sci 59:466–468

    Google Scholar 

  • Ramachandran TK, Menon P (1979) Pollination mechanisms and inbreeding depression in niger (Guizotia abyssinica Cass.). Madras Agric J 66:449–454

    Google Scholar 

  • Riley KW, Belayneh H (1989) Niger. In: Röbbelen G, Downey RK, Shri A (eds) Oil crops of the world. McGraw Hill, New York, pp 394–403

    Google Scholar 

  • Samaha RR, Boyle TH (1989) Self-incompatibility of Zinnia augustifolia HBK (Compositae). II. Genetics. J Hered 80:368–372

    Google Scholar 

  • Schierup MH, Vekemans X, Christiansen FB (1998) Allelic genealogies in sporophytic self-incompatibility systems in plants. Genetics 150:1187–1198

    CAS  PubMed  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis. Ver 2.000. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Geneva

  • Shivanna KR, Johri BM (1985) The angiosperm pollen structure and function. Wiley, New York

    Google Scholar 

  • Stephens LC (2008) Self-incompatibility in Echinacea purpurea. HortScience 43:1350–1354

    Google Scholar 

  • Takahashi H (1973) Genetic and physiological analysis of pseudo-self-compatibility in Petunia hybrida. Jpn J Genet 48:27–33

    Article  Google Scholar 

  • Vekemans X, Schierup MH, Christiansen FB (1998) Mate availability and fecundity selection in multi-allelic self-incompatibility systems in plants. Evolution 52:19–29

    Article  Google Scholar 

  • Whitehouse HLK (1949) Multiple allelomorph heterothallism in the fungi. New Phytol 48:212–244

    Article  Google Scholar 

  • Wright S (1939) The distribution of self-sterility alleles in populations. Genetics 24:538–552

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed by the Einar and Inga Nilsson fund to which the authors are highly grateful. We thank Mrs. Ann-Charlotte Strömdahl for her assistance in the laboratory-related work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mulatu Geleta.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10681-010-0228-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geleta, M., Bryngelsson, T. Population genetics of self-incompatibility and developing self-compatible genotypes in niger (Guizotia abyssinica). Euphytica 176, 417–430 (2010). https://doi.org/10.1007/s10681-010-0184-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0184-1

Keywords

Navigation