Skip to main content
Log in

Selection of U and M genome-specific wheat SSR markers using wheat–Aegilops biuncialis and wheat–Ae. geniculata addition lines

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

We selected wheat SSR markers specific to the U and M genomes of Aegilops species. A total of 108 wheat SSR markers were successfully tested on Ae. biuncialis (2n = 4x = 28, UbUbMbMb), on five wheat–Ae. biuncialis addition lines (2Mb, 3Mb, 7Mb, 3Ub and 5Ub) and on a wheat–Ae. geniculata (1Ug, 2Ug, 3Ug, 4Ug, 5Ug, 7Ug, 1Mg, 2Mg, 4Mg, 5Mg, 6Mg and 7Mg) addition series. Among the markers, 86 (79.6%) were amplified in the Ae. biuncialis genome. Compared with wheat, polymorphic bands of various lengths were detected on Ae. biuncialis for 35 (32.4%) of the wheat microsatellite markers. Three of these (8.6%) exhibited specific PCR products on wheat–Ae. biuncialis or wheat–Ae. geniculata addition lines. The primers GWM44 and GDM61 gave specific PCR products on the 2Mb and 3Mb wheat–Ae. biuncialis addition lines, but not on the 2Mg addition line of Ae. geniculata. A specific band was observed on the 7Ug wheat–Ae. geniculata addition line using the BARC184 primer. These three markers specific to the U and M genomes are helpful for the identification of 2Mb, 3Mb and 7Ug chromosome introgressions into wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adonina IG, Salina EA, Pestsova EG, Röder MS (2005) Transferability of wheat microsatellites to diploid Aegilops species and determination of chromosomal localizations of microsatellites in the S genome. Genome 48:959–970

    Article  CAS  PubMed  Google Scholar 

  • Badaeva ED, Amosova AV, Samatadze TE, Zoschchuk SA, Shostak NG, Chikida NN, Zelenin AV, Raupp WJ, Friebe B, Gill BS (2004) Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst Evol 246:45–76

    Article  CAS  Google Scholar 

  • Castilho A, Miller TE, Heslop-Harrison JS (1997) Analysis of a set of homoeologous group 1 wheat-Aegilops umbellulata recombinant chromosome lines using genetic markers. Theor Appl Genet 94:293–297

    Article  CAS  Google Scholar 

  • Cifuentes M, Benavente E (2009) Wheat-alien metaphase I pairing of individual wheat genomes and D genome chromosomes in interspecific hybrids between Triticum aestivum L. and Aegilops geniculata Roth. Theor Appl Genet 119:805–813

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    Article  CAS  PubMed  Google Scholar 

  • Csanádi G, Vollmann J, Stift G, Lelley T (2001) Seed quality QTL identified in a molecular map of early maturing soybean. Theor Appl Genet 103:912–919

    Article  Google Scholar 

  • Friebe B, Tuleen N, Gill BS (1999) Development and identification of a set of Triticum aestivumAegilops geniculata chromosome addition lines. Genome 42:374–380

    Article  Google Scholar 

  • Gill BS, Browder LE, Hatchett JH, Harvey TL, Martin TJ, Raupp WJ, Sharma HC, Waines JG (1983) Disease and insect resistance in wild wheats. In: Sakamoto S (ed) Proc 6th int wheat genet symp, Faculty of Agriculture. Kyoto University, Japan, pp 785–792

  • Gill BS, Sharma HC, Raupp WJ, Browder LE, Hatchett JH, Harvey TL (1985) Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, Hessian fly and greenbug. Plant Breed 69:314–316

    Google Scholar 

  • Gill BS, Raupp WJ, Sharma HC, Browder LE, Hatchett JH, Harvey TL, Moseman JG (1986) Resistance in Aegilops squarrosa to wheat leaf rust, wheat powdery mildew, greenbug and Hessian fly. Plant Dis 70:553–556

    Article  Google Scholar 

  • Gill KS, Lubbers EL, Gill BS, Raupp WJ, Cox TS (1991) A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome 34:362–374

    Google Scholar 

  • Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Roeder M, Gautier MF, Jourdier P, Schatter AR, Dubcovsky J, De la Pena RC, Khairallah M, Penner G, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P (2002) Genetic mapping of 66 wheat microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  CAS  PubMed  Google Scholar 

  • Guyomarc’h H, Sourdille P, Edwards KJ, Bernard M (2002) Studies of the transferability of microsatellites derived from Triticum tauschii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor Appl Genet 105:736–744

    Article  PubMed  Google Scholar 

  • Hang A, Burton CS, Bockelman H (2006) Characterization of wild wheat (Aegilops L.) and wild barley (Hordeum L.) germplasm using intersimple sequence repeat (ISSR) and general DNA primers. Plant Genet Res Newsl 147:25–28

    Google Scholar 

  • Jiang J, Gill BS (1994) Nonisotopic in situ hybridization and plant genome analysis: the first 10 years. Genome 37:717–725

    CAS  PubMed  Google Scholar 

  • Jiang J, Gill BS (2006) Current status and future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Khan RR, Bariana HS, Dholakia BB, Naik SV, Lagu MD, Rathjen AJ, Bhavani S (2005) Molecular mapping of stem and leaf rust resistance in wheat. Theor Appl Genet 111:846–850

    Article  CAS  PubMed  Google Scholar 

  • Lagudah ES, Appels R, Brown AHD, McNeil D (1991) The molecular-genetic analysis of Triticum tauschii, the D-genome donor to hexaploid wheat. Genome 34:375–386

    CAS  Google Scholar 

  • Lelley T, Stachel M, Grausgruber H, Vollmann J (2000) Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661–668

    Article  CAS  PubMed  Google Scholar 

  • Leonova IN, Röder MS, Nasyrova F (2009) The application of wheat microsatellite markers for the detection of interspecific variation in tetraploid Aegilops species with C and U genomes. Cereal Res Commun 37:335–343

    Article  CAS  Google Scholar 

  • Logojan AA, Molnár-Láng M (2000) Production of Triticum aestivumAegilops biuncialis chromosome additions. Cereal Res Commun 28:221–228

    Google Scholar 

  • Markova M, Vyskot B (2009) New horizons of genomic in situ hybridization. Cytogenet Genome Res 126:368–375

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Anderson OD (2005) Catalogue of gene symbols for wheat: 2005 supplement. Annu Wheat Newsl 51:250–285

    Google Scholar 

  • Molnár I, Gáspár L, Sárvári É, Dulai S, Hoffmann B, Molnár-Láng M, Galiba G (2004) Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct Plant Biol 31:1149–1159

    Article  Google Scholar 

  • Molnár I, Benavente E, Molnár-Láng M (2009) Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivumAegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome 52:156–165

    Article  PubMed  Google Scholar 

  • Molnár-Láng M, Linc G, Sutka J (1996) Transfer of the recessive crossability allele kr1 from Chinese Spring into winter wheat variety Martonvásári 9. Euphytica 90:301–305

    Article  Google Scholar 

  • Molnár-Láng M, Linc G, Nagy ED, Schneider A, Molnár I (2002) Molecular cytogenetic analysis of wheat-alien hybrids and derivatives. Acta Agron Hung 50:303–311

    Article  Google Scholar 

  • Monte JV, De Nova PJG, Soler C (2001) AFLP-based analysis to study genetic variability and relationships in the Spanish species of the genus Aegilops. Hereditas 135:233–238

    Article  CAS  PubMed  Google Scholar 

  • Nagy ED, Christoph E, Molnár-Láng M, Lelley T (2003) Genetic mapping of sequence-specific PCR-based markers on the short arm of the 1BL.1RS wheat rye translocation. Euphytica 132:243–250

    Article  CAS  Google Scholar 

  • Nagy ED, Molnár I, Schneider A, Kovács G, Molnár-Láng M (2006) Characterisation of chromosome-specific S-SAP markers and their use to study genetic diversity in Aegilops species. Genome 49:289–296

    Article  CAS  PubMed  Google Scholar 

  • Peil A, Korzun V, Schubert V, Schumann E, Weber WE, Röder MS (1998) The application of wheat microsatellites to identify disomic Triticum aestivumAegilops markgrafii addition lines. Theor Appl Genet 96:138–146

    Article  CAS  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000a) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:697–698

    Article  Google Scholar 

  • Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Röder MS (2000b) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106

    Article  CAS  Google Scholar 

  • Raupp WJ, Gill BS, Friebe B, Wilson DL, Cox TS, Sears RG (1995) The Wheat Genetics Resource Center: germ plasm conservation, evaluation and utilization. In: Li ZS, Xin ZY (eds) Proc 8th int wheat genet symp. China Agricultural Scientech Press, Beijing, China, pp 469–465

  • Raupp WJ, Friebe B, Wilson DL, Cox TS, Gill BS (1997) Kansas State’s Wheat Genetics Resource Center provides unique oasis for germplasm research. Diversity 13:21–23

    Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Sasanuma T, Chabane K, Endo TR, Valkoun J (2004) Characterization of genetic variation in and phylogenetic relationships among diploid Aegilops species by AFLP: incongruity of chloroplast and nuclear data. Theor Appl Genet 108:612–618

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Molnár-Láng M (2009) Detection of the 1RS chromosome arm in Martonvásár wheat genotypes containing 1BL.1RS or 1AL.1RS translocations using SSR and STS markers. Acta Agron Hung 57:409–416

    Article  CAS  Google Scholar 

  • Schneider A, Linc G, Molnár I, Molnár-Láng M (2005) Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of five derived wheat-Aegilops biuncialis disomic addition lines. Genome 48:1070–1082

    Article  PubMed  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan TB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  CAS  PubMed  Google Scholar 

  • van Slageren MW (1994) Wild wheats: a monograph of Aegilops L., and Amblyopyrum (Jaub and Spach) Eig (Poaceae). Agricultural University, Wageningen, Netherlands, and the International Center for Agricultural Research in Dry Areas, Aleppo, Syria. pp 139–404

  • Zaharieva M, Monneveux P, Henry M, Rivoal R, Valkoun J, Nachit MM (2001) Evaluation of a collection of wild wheat relative Aegilops geniculata Roth and identification of potential sources for useful traits. Euphytica 119:33–38

    Article  Google Scholar 

  • Zaharieva M, Suenaga K, William HM, Mujeeb-Kazi A (2003) Microsatellite markers for identification of Aegilops geniculata Roth. M- and U-genome chromosomes in wheat background. Ann Wheat Newsl 49:75–78

    Google Scholar 

  • Zhang H, Jia J, Gale MD, Devos KM (1998) Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor Appl Genet 96:69–75

    Article  CAS  Google Scholar 

  • Zhang H, Reader SM, Liu X, Jia JZ, Gale MD, Devos KM (2001) Comparative genetic analysis of the Aegilops longissima and Ae. sharonensis genomes with common wheat. Theor Appl Genet 103:518–525

    Article  CAS  Google Scholar 

  • Zhang LY, Bernard M, Leroy P, Feuillet C, Sourdille P (2005) High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet 111:677–687

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The technical assistance of Mrs. J. Bucsi, Mrs. E. Türkösi and Mrs. I. Keserű is gratefully acknowledged. This work was financially supported by the Hungarian National Scientific Research Fund, No. PD75450 and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The Syngene G Box gel documentation system used in this research was purchased with funds from the AGRISAFE Project (No. 203288 EU-FP7-REGPOT 2007-1). We thank Dr. B. Friebe for supplying the wheat–Ae. geniculata addition lines and express our gratitude to B. Harasztos and A. Bacskovszky for linguistic revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márta Molnár-Láng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, A., Molnár, I. & Molnár-Láng, M. Selection of U and M genome-specific wheat SSR markers using wheat–Aegilops biuncialis and wheat–Ae. geniculata addition lines. Euphytica 175, 357–364 (2010). https://doi.org/10.1007/s10681-010-0180-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0180-5

Keywords

Navigation