Euphytica

, Volume 173, Issue 3, pp 397–407 | Cite as

An overview of male-sterility systems in pigeonpea [Cajanus cajan (L.) Millsp.]

  • V. A. Dalvi
  • K. B. Saxena
  • R. H. Luo
  • Y. R. Li
Review

Abstract

For commercial development of hybrids the four pre-requisites are; availability of perfect male-sterility system, efficient mass pollen transfer mechanism, hybrid vigor, and the large scale seed production of hybrids for commercialization. The type of male-sterility governs the acceptance of hybrids by farmers. Genetic male-sterility (GMS) system was not accepted by farmers due to the economics of large scale seed production. The major drawback was rouging of fertile counterpart from the female plot, which was time consuming and labor intensive. Cytoplasmic-genic male-sterility (CMS) system usually was a better option for large scale seed production. Hybrid vigor has been utilized in some cereal and vegetable crops. Pigeonpea (Cajanus cajan) displays considerable natural out-crossing and now CMS lines are available with different cytoplasmic backgrounds. This mini-review reports the research on development of CMS lines and CMS-based hybrids in pigeonpea.

Keywords

Cajanus cajan Male-sterility systems Pigeonpea 

References

  1. Ariyanayagam RP, Rao NA, Zaveri PP (1995) Cytoplasmic-genic male sterility in interspecific matings of Cajanus. Crop Sci 35:981–985Google Scholar
  2. Chauhan RM, Parmar LD, Patel PT, Tikka SBS (2004) Fertility restoration in cytoplasmic-genic male-sterile line of pigeonpea (Cajanus cajan (L.) Millsp.) derived from cajanus scarabaeoides. Indian J Genet 64:112–114Google Scholar
  3. Correns C (1908) Die Roller der mannlichen Keimzellenbei der Geschlechtshe stmmung Der gynodioccisrchen pflanzen (In De.). Bericht der Deutschen Botanischen Gesellschaft 26 A:686–701Google Scholar
  4. Dalvi VA, Saxena KB, Madrap IA, Kumar RV (2008a) Cytogenetic studies in A4 cytoplasmic-nuclear male-sterility system of pigeonpea. J Hered 99:667–670CrossRefPubMedGoogle Scholar
  5. Dalvi VA, Saxena KB, Madrap IA (2008b) Fertility restoration in cytoplasmic-nuclear male-sterile lines derived from 3 wild relatives of pigeonpea. J Hered 99:671–673CrossRefPubMedGoogle Scholar
  6. Deshmukh NY (1959) Sterile mutants in tur (Cajanus cajan). Nagpur Agric College Marg 33:20–21Google Scholar
  7. Dundas IS, Saxena KB, Byth DE (1981) Microsporogenesis and anther wall development in male-sterile and male-fertile lines of pigeonpea (Cajanus cajan (L.) Millsp.). Euphytica 30:431–435CrossRefGoogle Scholar
  8. Dundas IS, Saxena KB, Byth DE (1982) Pollen mother cell and anther wall development in a photo-insensitive male-sterile mutant in pigeonpea (Cajanus cajan (L.) Millsp.). Euphytica 31:371–375CrossRefGoogle Scholar
  9. Dundas IS, Britten EJ, Byth DE, Gordon GH (1987) Meiotic behavior of hybrids of pigeonpea and two Australian native Atylosia species. J Hered 78:261–265Google Scholar
  10. Howard A, Howard GC, Khan AR (1919) Studies in pollination of Indian crops. I. Memoirs, Department of Indian Crops, India (Botanical series) 10:195–200Google Scholar
  11. ICRISAT (1991) Legume program annual report. International Crops Research Institute, Patancheru A.P., IndiaGoogle Scholar
  12. ICRISAT (1993) Legume program annual report. International Crops Research Institute, Patancheru, A.P., IndiaGoogle Scholar
  13. Jogendra S, Bajpai GC, Tewari SK (2004) Cytogenetic analysis of interspecific hybrids in genus Cajanus. Indian J Pulses Res 17:14–16Google Scholar
  14. Katti RY, Giddanavar HS, Naik Shamala, Agadi SN, Hegde RR (1994) Persistence of callose and tapetum in the microsporogenesis of genic male-sterile (Cajanus cajan (L.) Millsp) with well-formed endothecium. Cytologia 59:65–72Google Scholar
  15. Kaul MLH (1988) In: Male-sterility in higher plants, Berlin, Heidelberg, Germany, Spinger-verlag, 1005 ppGoogle Scholar
  16. Kolreuter DJG (1763) Voolarfige Nachrcht von linigen das geschlet der Pflanzenbetreffen-den versuchen and Beobachtanager. Engelmen, LeipzingGoogle Scholar
  17. Maesen LJG, Remnamdan P, Murthi AN (1980) Pigeonpea genetic resources. In: Proceedings of the international workshop on pigeonpea, vol I. ICRISAT, Patancheru, A.P. India, pp 385–392, 15–19 Dec 1980,Google Scholar
  18. Mallikarjuna N, Kalpana N (2004) Mechanism of cytoplasmic nuclear male sterility in pigeonpea wide cross Cajanus cajan × C. acutifolius. Indian J Genet 64:115–117Google Scholar
  19. Mallikarjuna N, Saxena KB (2002) Production of hybrids between Cajanus acutifolius and C. cajan. Euphytica 124:107–110CrossRefGoogle Scholar
  20. Mallikarjuna N, Saxena KB (2005) A new cytoplasmic nuclear male-sterility system derived from cultivated pigeonpea cytoplasm. Euphytica 142:143–148CrossRefGoogle Scholar
  21. Nageshwar Rao, Saxena KB, Singh L (1996) Pod and seed set in cytoplasmic male-sterile pigeonpea progenies. Intel Chickpea and Pigeonpea Newsl (3) 57Google Scholar
  22. Omanga PA, Faris DG, Saxena KB (1992) Genetic analysis of grain yield in pigeonpea using male-sterile lines. Indian J Pulses Res 5:9–14Google Scholar
  23. Onim JFM (1981) In: Proceedings of the international workshop on pigeonpea. ICRISAT, India, pp 427–436Google Scholar
  24. Pandey N, Singh NB (1998) Stability for seed yield in pigeonpea hybrids. Leg Res 21:233–235Google Scholar
  25. Rathnaswamy R, Yolanda LJ, Kalaimagal T, Suryakumar M, Sassikumar D (1999) Cytoplasmic-genic male-sterility in pigeonpea. Indian J Agric Sci 69:159–160Google Scholar
  26. Reddy BVS, Green JM, Bisen SS (1978) Genetic male-sterility in pigeonpea. Crop Sci 18:362–364CrossRefGoogle Scholar
  27. Reddy LJ, Rao NK, Saxena KB (2001) Production and characterization of hybrids between Cajanus cajan × C. reticualta var. grandifolius. Euphytica 121:93–98CrossRefGoogle Scholar
  28. Saxena KB (2006a) Seed production systems in pigeonpea. Patancheru 502 324, Andhra Pradesh, India: International crops research institute for the semi-arid tropics, 76 pp. ISBN 92-9066-490-8Google Scholar
  29. Saxena KB (2006b) Hybrid pigeonpea seed production manual. Patancheru 502 324, Andhra Pradesh, India: International crops research institute for the semi-arid tropics, 32 pp. ISBN 92-9066-493-2Google Scholar
  30. Saxena KB, Kumar RV (2003) Development of a cytoplasmic nuclear male sterility in pigeonpea using C. scarabaeoides (L.) Thours. Indian J Genet 53:223–229Google Scholar
  31. Saxena KB, Wallis ES, Byth DE (1983) A new gene for male-sterility in pigeonpea. Heredity 51:419–421CrossRefGoogle Scholar
  32. Saxena KB, Singh L, Gupta MD (1990a) Variation for natural out-crossing in pigeonpea. Euphytica 46:143–148CrossRefGoogle Scholar
  33. Saxena KB, Singh L, Reddy MV, Singh U, Lateef SS, Sharma SB, Remnandan P (1990b) Intra species variation in Atylosia scarabaeoides (L.) Benth, a wild relative of pigeonpea (Cajanus cajan (L.) Millsp.). Euphytica 49:185–191Google Scholar
  34. Saxena KB, Reddy LJ, Gupta SC, Kumar RV, Singh L, Green JM, Sharma D, Faris D, Reddy MV, Chauhan YS, Singh U, Johansen C, Nene YL (1993) Registration of ICPH 8Google Scholar
  35. Saxena KB, Rao AN, Singh U, Remnanadan P (1996) Interspecies variation in Cajanus platicarpus for some agronomic traits and crossability. Intel Chickpea and Pigeonpea Newsl 3:49–51Google Scholar
  36. Saxena KB, Srivastava DP, Chauhan YS, Ali M (2005a) Hybrid pigeonpea. In: Ali Masood, Kumar Shiv (eds) Advances in pigeonpea research. IIPR Kanpur, India, pp 96–133Google Scholar
  37. Saxena KB, Kumar RV, Srivastava N, Shiying B (2005b) A cytoplasmic-nuclear male-sterility system derived from a cross between Cajanus cajanifolius and C. cajan. Euphytica 145:291–296CrossRefGoogle Scholar
  38. Saxena KB, Kumar RV, Madhavi Latha K, Dalvi VA (2006) Commercial pigeonpea hybrids are just a few steps away. Indian J Pulses Res 19:7–16Google Scholar
  39. Tikka SBS, Parmar LD, Chauhan RM (1997) First record of cytoplasmic-genic male-sterility in pigeonpea (Cajanus cajan (L.) Millsp.) through wide hybridization. GAU Res J 22:160–162Google Scholar
  40. Verma MM, Sidhu PS (1993) Pigeonpea Hybrids: Historical development, present status and future perspective in Indian content. Department of Plant Breeding, Punjab Agricultural University, Ludhiana, IndiaGoogle Scholar
  41. Wallis ES, Saxena KB, Byth DE (1980) A new source of genetic male sterility in pigeonpea. In: Proceedings of the international workshop on pigeonpea, ICRISAT, Patancheru, India, pp 105–108Google Scholar
  42. Wanjari KB, Patil AN, Patel MC, Manjaya JG (2000) Male-sterility derived from Cajanus sericeus × Cajanus cajan: Confusion of cytoplasmic male-sterility with dominant genic male-sterility. Euphytica 115:59–64CrossRefGoogle Scholar
  43. Yadav DV (2005) Genetics of cytoplasmic-nuclear male-sterility and identification of molecular markers of fertility restorer genes in pearl millet (Pennisetum glaucum (L.) R. Br.) Thesis submitted to Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India, 214 ppGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • V. A. Dalvi
    • 1
  • K. B. Saxena
    • 2
  • R. H. Luo
    • 1
  • Y. R. Li
    • 1
  1. 1.Guangxi Academy of Agricultural SciencesNanningChina
  2. 2.International Crops Research Institute for the Semi-Arid TropicsPatancheruIndia

Personalised recommendations