Skip to main content
Log in

Seed conservation in ex situ genebanks—genetic studies on longevity in barley

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Recognizing the danger due to a permanent risk of loss of the genetic variability of cultivated plants and their wild relatives in response to changing environmental conditions and cultural practices, plant ex situ genebank collections were created since the beginning of the last century. World-wide more than 6 million accessions have been accumulated of which more than 90% are stored as seeds. Research on seed longevity was performed in barley maintained for up to 34 years in the seed store of the German ex situ genebank of the Leibniz-Institute of Plant Genetics and Crop Plant Research in Gatersleben. A high intraspecific variation was detected in those natural aged accessions. In addition three doubled haploid barley mapping populations being artificial aged were investigated to study the inheritance of seed longevity. Quantitative trait locus (QTL) mapping was based on a transcript map. Major QTLs were identified on chromosomes 2H, 5H (two) and 7H explaining a phenotypic variation of up to 54%. A sequence homology search was performed to derive the putative function of the genes linked to the QTLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Annonymus (2008) Annual report 2007. Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, pp 222

  • Aufhammer G, Simon U (1957) Die Samen landwirtschaftlicher Kulturpflanzen im Grundstein des ehemaligen Nürnberger Stadttheaters und ihre Keimfähigkeit. Z Acker und Pflanzenbau 103:454–472

    Google Scholar 

  • Bentsink L, Alonso-Blanco C, Vreugdenhil D, Tesnier K, Groot SPC, Koornneef M (2000) Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. Plant Physiol 124:1595–1604

    Article  PubMed  CAS  Google Scholar 

  • Börner A (2006) Preservation of plant genetic resources in the biotechnology era. Biotechnol J 1:1393–1404

    Article  PubMed  CAS  Google Scholar 

  • Buck-Sorlin G (2002) The search for QTL in barley (Hordeum vulgare L.) using a new mapping population. Cel Mol Biol Lett 7:523–535

    CAS  Google Scholar 

  • Chuck G, Meeleyadn RB, Hake S (1998) The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev 12:1145–1154

    Article  PubMed  CAS  Google Scholar 

  • Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O, Sato K, Szucs P, Toojinda T, Vales MI, Wolfe RI (2001) Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424

    Article  CAS  Google Scholar 

  • Ellis RH (1988) The viability equation, seed viability nomographs, and practical advice on seed storage. Seed Sci Technol 16:29–50

    Google Scholar 

  • Ellis RH, Roberts EH (1980) Improved equations for the prediction of seed longevity. Ann Bot 45:13–30

    Google Scholar 

  • Ellis RH, Roberts EH (1981) The quantification of ageing and survival in orthodox seeds. Seed Sci Technol 9:373–409

    Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1989) A comparison of the low-moisture-content limit to the logarithmic relation between seed moisture and longevity in twelve species. Ann Bot 63:601–611

    Google Scholar 

  • FAO (1998) The state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome, p 510

    Google Scholar 

  • Hampton JG, TeKrony DM (1995) Handbook of vigour test methods. International Seed Testing Association, Zürich, p 117

    Google Scholar 

  • Huang B, Jin-Yuan L (2006) A cotton dehydration responsive element binding protein functions as a transcriptional repressor of DRE-mediated gene expression. Biochem Biophys Res Commun 343:1023–1031

    Article  PubMed  CAS  Google Scholar 

  • ISTA (2008) International rules for seed testing. International Seed Testing Association, Bassersdorf

    Google Scholar 

  • Kim S, Soltis PS, Wall K, Soltis DE (2006) Phylogeny and domain evolution in the APETALA2-like gene family. Mol Biol Evol 23:107–120

    Article  PubMed  CAS  Google Scholar 

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrels M, Heun M, Franckowiak JD, Hoffmann D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    Article  CAS  Google Scholar 

  • Li X-Y, Rogers SW, Rogers JW (1991) A copy of exon 3-intron 3 from the barley aleurain gene is present on chromosome 2. Plant Mol Biol 17:509–512

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) Ethylene response factor 1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    Article  PubMed  CAS  Google Scholar 

  • Lundqvist UJ, Franckowiak D, Konishi T (1997) New and revised descriptions of barley genes. Barley Genet Newsl 26:22–516

    Google Scholar 

  • Miura K, Lin SY, Yano M, Nagamine T (2002) Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor Appl Genet 104:981–986

    Article  PubMed  CAS  Google Scholar 

  • Muir CE, Nilan RA (1973) Registration of steptoe barley. Crop Sci 13:770

    Google Scholar 

  • Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Rasmusson DC, Wilcoxson RD (1979) Registartion of ‘Morex’ barley. Crop Sci 19:293

    Article  Google Scholar 

  • Rogers JC, Dean D, Heck GR (1985) Aleurain: a barley thiol protease closely related to mammalian cathepsin H. Proc Natl Acad Sci USA 82:6512–6516

    Article  PubMed  CAS  Google Scholar 

  • Ruckenbauer P (1971) Keimfähiger Winterweizen aus dem Jahre 1877. Die Bodenkultur 22:372–386

    Google Scholar 

  • Shigemune A, Miura K, Sasahara H, Goto A, Yoshida T (2008) Role of maternal tissues in qLG-9 control of seed longevity in rice (Oryza sativa L.). Breed Sci 58:1–5

    Article  Google Scholar 

  • Specht C-E, Keller ERJ, Freytag U, Hammer K, Börner A (1997) Survey of seed germinability after long term storage in the Gatersleben genebank. Plant Genet Resour Newsl 111:64–68

    Google Scholar 

  • Specht C-E, Freytag U, Hammer K, Börner A (1998) Survey of seed germinability after long term storage in the Gatersleben genebank (part 2). Plant Genet Resour Newsl 115:39–43

    Google Scholar 

  • Stein N, Prasad M, Scholz U, Thiel T, Zhang HN, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1, 000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839

    Article  PubMed  CAS  Google Scholar 

  • Steiner AS, Ruckenbauer P (1995) Germination of 110-year-old cereal, weed seeds, the Vienna sample of 1877. Verification of effective ultra-dry storage at ambient temperature. Seed Sci Res 5:195–199

    Article  Google Scholar 

  • Steiner AM, Ruckenbauer P, Goecke E (1997) Maintenance in genebanks, a case study: contaminations observed in the Nürnberg oats of 1831. Genet Resour Crop Evol 44:533–538

    Article  Google Scholar 

  • Sun S, Yu J-P, Chen F, Zhao T-J, Fang X-H, Li Y-Q, Sui S-F (2008) TINY, a Dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signalling pathways in Arabidopsis. J Biol Chem 283:6261–6271

    Article  PubMed  CAS  Google Scholar 

  • Tattersall DB, van Heeswijck R, Hfj PB (1997) Identification and characterization of a fruit-specific, thaumatin-like protein that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes. Plant Physiol 114:759–769

    Article  PubMed  CAS  Google Scholar 

  • Wolfe RI, Franckowiak JD (1991) Multiple dominant and recessive genetic marker stocks in spring barley. Barley Genet Newsl 20:117–121

    Google Scholar 

  • Zareie R, Melanson DL, Murphy PJ (2002) Isolation of fungal cell wall degrading proteins from barley (Hordeum vulgare L.) leaves infected with Rhynchosporium secalis. Mol Plant Microbe Interact 15:1031–1039

    Article  PubMed  CAS  Google Scholar 

  • Zeng DL, Guo LB, Xu YB, Yasukumi K, Zhu LH, Qian Q (2006) QTL analysis of seed storability in rice. Plant Breed 125:57–60

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nils Stein for providing the marker data and Anita Winger, Sibylle Pistrick, Jutta Scheurenberg and Franziska Scharkowski for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Börner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagel, M., Vogel, H., Landjeva, S. et al. Seed conservation in ex situ genebanks—genetic studies on longevity in barley. Euphytica 170, 5–14 (2009). https://doi.org/10.1007/s10681-009-9975-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-009-9975-7

Keywords

Navigation