, Volume 170, Issue 1–2, pp 99–107 | Cite as

Quantitative trait loci mapping for biomass yield traits in a Lolium inbred line derived F2 population

  • U. C. M. Anhalt
  • J. S. Heslop-Harrison (Pat)
  • H. P. Piepho
  • S. Byrne
  • S. BarthEmail author


Lolium perenne L. (perennial ryegrass) is the principle forage grass species in temperate agriculture. Improving biomass yield still remains one of the most important aims of current forage breeding programmes. A quantitative trait locus (QTL) study investigating biomass yield traits in perennial ryegrass was carried out in greenhouse and field environments. The study is based on an F2 population consisting of 360 individuals derived from two inbred grandparents where the F1 has a large biomass yield phenotype. For both experimental environments co-localized QTL for biomass yield traits including fresh and dry weight and dry matter were identified on linkage groups 2, 3 and 7. A major QTL for fresh and dry weight was identified on LG 3 which explained around 30% of the phenotypic variance in the field experiment. The findings of this study are discussed with regard for their potential in research and breeding.


Lolium perenne Perennial ryegrass Biomass QTL Fresh weight Dry weight 



UCMA was financed by a Teagasc PhD Walsh Fellowship. The project was financed in part by the National Development Plan and by Teagasc core funding. We are grateful to several summer students, to the forage breeding group and the farm staff in Oak Park for help with field maintenance.


  1. Anhalt UCM, Heslop-Harrison P, Byrne S, Guillard A, Barth S (2008) Segregation distortion in Lolium: evidence for genetic effects. Theor Appl Genet 117:297–306. doi: 10.1007/s00122-008-0774-7 PubMedCrossRefGoogle Scholar
  2. Armstead IP, Turner LB, Marshall AH, Humphreys MO, King IP, Thorogood D (2008) Identifying genetic components controlling fertility in the outcrossing grass species perennial ryegrass (Lolium perenne) by quantitative genetics. New Phytol 178(3):559–571. doi: 10.1111/j.1469-8137.2008.02413.x PubMedCrossRefGoogle Scholar
  3. Becker H (1993) Pflanzenzüchtung. Eugen Ulmer Verlag, Stuttgart, 150 ppGoogle Scholar
  4. Bruns R, Peterson CJ (1998) Yield and stability factors associated with hybrid wheat. Euphytica 100:1–5. doi: 10.1023/A:1018364801101 CrossRefGoogle Scholar
  5. Cogan NOI, Smith KF, Yamada T, Francki MG, Vecchies AC, Jones ES, Spangenberg GC, Foster JW (2005) QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L). Theor Appl Genet 110:364–380. doi: 10.1007/s00122-004-1848-9 PubMedCrossRefGoogle Scholar
  6. Connolly V, Wright-Turner R (1984) Induction of cytoplasmic male-sterility into ryegrass (Lolium perenne). Theor Appl Genet 68:449–453. doi: 10.1007/BF00254817 CrossRefGoogle Scholar
  7. Hannaway D, Fransen S, Cropper J, Teel M, Chaney M, Griggs T, Halse R, Hart J, Cheeke P, Hansen D, Klinger R, Lane W (1999) Perennial ryegrass (Lolium perenne L.). A Pacific Northwest Extension Publication, vol. PNW 502. Oregon State University, Washington State University, University of IdahoGoogle Scholar
  8. Hayward MS, Vivero JL (1984) Selection for yield in Lolium perenne. II. Performance of spaced plant selections under competitive conditions. Euphytica 33:787–800CrossRefGoogle Scholar
  9. Hoecker N, Keller B, Piepho HP, Hochholdinger F (2006) Manifestation of heterosis during early maize (Zea mays L.) root development. Theor Appl Genet 112:421–429. doi: 10.1007/s00122-005-0139-4 PubMedCrossRefGoogle Scholar
  10. Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411PubMedGoogle Scholar
  11. Lisec J, Meyer RC, Steinfath M, Redestig H, Becher M, Witucka-Wall H, Fiehn O, Törjék O, Selbig J, Altmann T, Willmitzer L (2008) Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL population. Plant J 53:960–972. doi: 10.1111/j.1365-313X.2007.03383.x PubMedCrossRefGoogle Scholar
  12. Liu HL (1998) Statistical genomics: linkage, mapping, and QTL analysis. CRC Press, Boca RatonGoogle Scholar
  13. Piepho HP, Büchse A, Emrich K (2003) A hitchhiker’s guide to mixed models for randomized experiments. J Agron Crop Sci 189:310–322. doi: 10.1046/j.1439-037X.2003.00049.x CrossRefGoogle Scholar
  14. Piepho HP, Williams ER, Fleck M (2006) A note on the analysis of designed experiments with complex treatment structure. HortScience 41:446–452Google Scholar
  15. Stuber CW, Polacco M, Senior ML (1999) Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci 39:1571–1583CrossRefGoogle Scholar
  16. Turner LB, Cairns AJ, Armstead IP, Thomas H, Humphreys MW, Humphreys MO (2008) Does fructan have a functional role in physiological traits? Investigation by quantitative trait locus mapping. New Phytol 179:765–775. doi: 10.1111/j.1469-8137.2008.02495.x PubMedCrossRefGoogle Scholar
  17. Uchimiya H, Takahashi N (1973) Kinetics of heterosis in growth of the leaf blade in Zea mays L. Ann Bot (Lond) 37:147–152Google Scholar
  18. Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) Map QTL 4.0: software for the calculation of QTL positions on genetic maps. Plant Research International, WageningenGoogle Scholar
  19. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78. doi: 10.1093/jhered/93.1.77 PubMedCrossRefGoogle Scholar
  20. Wilkins PW, Humphreys MO (2003) Progress in breeding perennial forage grasses for temperate agriculture. J Agric Sci 140:129–150. doi: 10.1017/S0021859603003058 CrossRefGoogle Scholar
  21. Yamada T, Jones ES, Cogan NOI, Vecchies AC, Nomura T, Hisano H, Shimamoto Y, Smith KF, Hayward MD, Forster JW (2004) QTL analysis of morphological, developmental, and winter hardiness-associated traits in perennial ryegrass. Crop Sci 44:925–935Google Scholar
  22. Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang QA, Saghai Maroof MA (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231. doi: 10.1073/pnas.94.17.9226 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • U. C. M. Anhalt
    • 1
    • 2
  • J. S. Heslop-Harrison (Pat)
    • 2
  • H. P. Piepho
    • 3
  • S. Byrne
    • 1
  • S. Barth
    • 1
    Email author
  1. 1.Teagasc, Crops Research CentreCarlowIreland
  2. 2.Department of BiologyUniversity of LeicesterLeicesterUK
  3. 3.Institute for Crop Production and Grassland Research BioinformaticsUniversity of HohenheimStuttgartGermany

Personalised recommendations