Skip to main content

Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize

Abstract

The response of plants to drought stress is very complex and involves expression of a lot of genes and pathways for diverse mechanisms and interactions with environments. Many quantitative trait loci(QTL) mapping experiments have given heterogeneous results due to use of different genotypes and populations tested in various environments. Our purpose was to identify some important constitutive and adaptive QTL using meta-analysis and to find specific genes and their families for speculating on drought tolerance networks. A total of 239 QTL detected under water-stressed conditions and 160 detected under control conditions from 12 populations tested in 22 experiments were compiled and compared, resulting in identification of 39 consensus QTL under water stress, and 36 under control conditions. Of them, 32 consensus QTL were supposed to be adaptive while others were constitutive QTL. The consensus QTL on chromosomes 1, 2, 3, 5, 6 and 9 were highly overlapped with several different traits and could be identified under multiple environments, most of which were related to traits of high phenotypic variance. Moreover, 48 candidate genes related to stress tolerance were located in silico in these consensus QTL regions what should facilitate the construction of QTL networks and help to understand the mechanisms related to drought tolerance.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Agrama HAS, Moussa M (1996) Mapping QTL in breeding for drought tolerance in maize (Zea mays L.). Euphytica 91:89–97

    Article  CAS  Google Scholar 

  2. Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  3. Ballini E, Morel J, Droc G, Price A, Courtois B, Notteghem J, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provided new insights into partial and complete resistance. Mol Plant Microbe Interact 21:859–868

    Article  CAS  PubMed  Google Scholar 

  4. Beavis WD, Smith OS, Grant D, Fincher RR (1994) Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci 34:882–896

    Google Scholar 

  5. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  6. Bernier J, Kumar A, Venuprasad R, Spaner D, Verulkar S, Mandal NP, Sinha PK, Peeraju P, Dongre PR, Mahto RN, Atlin G (2009) Characterization of the effect of a QTL for drought tolerance in rice, qtl2.1, over a range of environments in the Philippines and eastern India. Euphytica 166:207–217

    Article  Google Scholar 

  7. Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR (2004) Improving drought tolerance in maize: a view from industry. Field Crops Res 90:19–34

    Article  Google Scholar 

  8. Chandler VL, Brendel V (2002) The maize genome sequencing project. Plant Physiol 130:1594–1597

    Article  CAS  PubMed  Google Scholar 

  9. Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185

    Article  CAS  PubMed  Google Scholar 

  10. Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  CAS  PubMed  Google Scholar 

  11. Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    Article  CAS  PubMed  Google Scholar 

  12. Frova C, Krajewski P, Di Fonzo N, Villa M, Sari-Gorla M (1999) Genetic analysis of drought tolerance in maize by molecular markers I. Yield components. Theor Appl Genet 99:280–288

    Article  Google Scholar 

  13. Glass GV (1976) Primary, secondary, and meta-analysis of research. Educ Res 5:3–8

    Google Scholar 

  14. Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    CAS  PubMed  Google Scholar 

  15. Guingo E, Hébert Y, Charcosset A (1998) Genetic analysis of root traits in maize. Agronomie 18:225–235

    Article  Google Scholar 

  16. Guo J, Su G, Zhang J, Wang G (2008) Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi-arid land condition. Afr J Biotechnol 7:1829–1838

    CAS  Google Scholar 

  17. Hanocq E, Laperche A, Jaminon O, Lainé AL, Le Gouis J (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114:569–584

    Article  CAS  PubMed  Google Scholar 

  18. Hao Z, Li X, Xie C, Li M, Zhang D, Bai L, Zhang S (2008) Two consensus quantitative trait loci clusters controlling anthesis-silking interval, ear setting and grain yield might be related with drought tolerance in maize. Ann Appl Biol 153:73–83

    Article  Google Scholar 

  19. Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic Press, New York

    Google Scholar 

  20. Kearsey MJ, Farquhar AGL (1998) QTL analysis in plants; where are we now? Heredity 80:137–142

    Article  PubMed  Google Scholar 

  21. Khavkin E, Coe EH (1997) Mapped genomic locations for developmental functions and QTLs reflect concerted groups in maize (Zea mays L.). Theor Appl Genet 95:343–352

    Article  CAS  Google Scholar 

  22. Khowaja FS, Norton GJ, Courtois B, Price AH (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics 10:276

    Article  PubMed  CAS  Google Scholar 

  23. Landi P, Sanguineti MC, Salvi S, Giuliani S, Bellotti M, Maccaferri M, Conti S, Tuberosa R (2005) Validation and characterization of a major QTL affecting leaf ABA concentration in maize. Mol Breed 15:291–303

    Article  CAS  Google Scholar 

  24. Landi P, Sanguineti MC, Liu C, Li Y, Wang TY, Giuliani S, Bellotti M, Salvi S, Tuberosa R (2007) Root-ABA1 QTL affects root lodging, grain yield, and other agronomic traits in maize grown under well-watered and water-stressed conditions. J Exp Bot 58:319–326

    Article  CAS  PubMed  Google Scholar 

  25. Lebreton C, Lazić-Jančić V, Steed A, Pekić S, Quarrie SA (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853–865

    Article  CAS  Google Scholar 

  26. Li X, Li X, Hao Z, Tian Q, Zhang S (2005) Consensus map of the QTL relevant to drought tolerance of maize under drought conditions. Sci Agric Sin 38:882–890

    CAS  Google Scholar 

  27. Liu S, Dall MD, Griffey CA, McKendry AL (2009) Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Sci 49:1955–1968

    Article  CAS  Google Scholar 

  28. Lu GH, Tang JH, Yan JB, Ma XQ, Li JS, Chen SJ, Ma JC, E LZ, Liu ZX, Zhang YR, Dai JR (2006) Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time. J Integr Plant Biol 48:1233–1243

    Article  CAS  Google Scholar 

  29. Lv X, Li X, Xie C, Hao Z, Ji H, Shi L, Zhang S (2008) Comparative QTL mapping of resistance to sugarcane mosaic virus in maize based on bioinformatic. Hereditas 30:101–108

    PubMed  Google Scholar 

  30. Moreau L, Charcosset A, Gallais A (2004) Experimental evaluation of several cycles of marker-assisted selection in maize. Euphytica 137:111–118

    Article  CAS  Google Scholar 

  31. Pelleschi S, Guy S, Kim J, Pointe C, Mahé A, Barthes L, Leonardi A, Prioul J (1999) Ivr2, a candidate gene for a QTL of vacuolar invertase activity in maize leaves. Gene-specific expression under water stress. Plant Mol Biol 39:373–380

    Article  CAS  PubMed  Google Scholar 

  32. Pennisi E (2008) The blue revolution, drop by drop, gene by gene. Science 320:171–173

    Article  CAS  PubMed  Google Scholar 

  33. Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360

    Article  CAS  PubMed  Google Scholar 

  34. Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, De Leon Gonzalez D (1996) Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914

    Article  CAS  Google Scholar 

  35. Ribuat JM, Jiang C, De Leon Gonzalez D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896

    Article  Google Scholar 

  36. Ribuat JM, Betran J, Monneveux P, Setter T (2009) Drought tolerance in maize. In: Bennetzen JL, Hake SC (eds) Handbook of maize: its biology. Springer, Dordrecht, pp 311–344

    Chapter  Google Scholar 

  37. Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel JF, Paterson AH (2007) Meta-analysis of polyploidy cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176:2577–2588

    Article  CAS  PubMed  Google Scholar 

  38. Sanguineti MC, Tuberosa R, Landi P, Salvi S, Maccaferri M, Casarini E, Conti S (1999) QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. J Exp Bot 50:1289–1297

    Article  CAS  Google Scholar 

  39. Sari-Gorla M, Krajewski P, Di Fonzo N, Villa M, Frova C (1999) Genetic analysis of drought tolerance in maize by molecular markers II. Plant height and flowering. Theor Appl Genet 99:289–295

    Article  Google Scholar 

  40. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  41. Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208

    CAS  PubMed  Google Scholar 

  42. Tuberosa R, Salvi S (2006) Genomics approaches to improve drought tolerance in crops. Trends Plant Sci 11:412–415

    Article  CAS  Google Scholar 

  43. Tuberosa R, Salvi S (2009) QTL for agronomic traits in maize production. In: Bennetzen JL, Hake SC (eds) Handbook of maize: its biology. Springer, Dordrecht, pp 501–542

    Chapter  Google Scholar 

  44. Tuberosa R, Sanguineti MC, Landi P, Salvi S, Casarini E, Conti S (1998) RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stressed maize (Zea mays L.). Theor Appl Genet 97:744–755

    Article  CAS  Google Scholar 

  45. Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Conti S (2002a) Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot 89:941–963

    Article  CAS  PubMed  Google Scholar 

  46. Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti M (2002b) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48:697–712

    Article  CAS  PubMed  Google Scholar 

  47. Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122

    CAS  PubMed  Google Scholar 

  48. Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:1–7

    Article  CAS  Google Scholar 

  49. Van Zandt PA, Mopper S (1998) A meta-analysis of adaptive deme formation in phytophagous insect populations. Am Nat 152:595–604

    Article  CAS  PubMed  Google Scholar 

  50. Vargas M, Van Eeuwijk FA, Crossa J, Ribaut JM (2006) Mapping QTLs and QTL × environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor Appl Genet 112:1009–1023

    Article  CAS  PubMed  Google Scholar 

  51. Veldboom LR, Lee M (1996a) Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I. Grain yield and yield components. Crop Sci 36:1310–1319

    CAS  Article  Google Scholar 

  52. Veldboom LR, Lee M (1996b) Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: II. Plant height and flowering. Crop Sci 36:1320–1327

    CAS  Google Scholar 

  53. Wang Y, Ji Y, Zhang Z, Zheng Y (2006) The comparative analysis based on maize integrated QTL map and meta-analysis of plant height QTLs. Chin Sci Bull 51:2219–2230

    Article  CAS  Google Scholar 

  54. Welcker C, Bousssuge B, Bencivenni C, Ribaut JM, Tardieu F (2007) Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit. J Exp Bot 58:339–349

    Article  CAS  PubMed  Google Scholar 

  55. Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Yunbi Xu from CIMMYT (International Wheat and Maize Improvement Center) for valuable comments and careful corrections to this manuscript and the finance support of the National Natural Science Foundation of China (30600394; 30721140554).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shihuang Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hao, Z., Li, X., Liu, X. et al. Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Euphytica 174, 165–177 (2010). https://doi.org/10.1007/s10681-009-0091-5

Download citation

Keywords

  • Drought
  • QTL
  • Maize