Skip to main content
Log in

Genetic variability among sugarcane genotypes based on polymorphisms in sucrose metabolism and drought tolerance genes

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Target region amplification polymorphism (TRAP) markers were used to estimate the genetic similarity (GS) among 53 sugarcane varieties and five species of the Saccharum complex. Seven fixed primers designed from candidate genes involved in sucrose metabolism and three from those involved in drought response metabolism were used in combination with three arbitrary primers. The clustering of the genotypes for sucrose metabolism and drought response were similar, but the GS based on Jaccard’s coefficient changed. The GS based on polymorphism in sucrose genes estimated in a set of 46 Brazilian varieties, all of which belong to the three Brazilian breeding programs, ranged from 0.52 to 0.9, and that based on drought data ranged from 0.44 to 0.95. The results suggest that genetic variability in the evaluated genes was lower in the sucrose metabolism genes than in the drought response metabolism ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Aqua:

Aquaporin

Arb:

Arbitrary primer

DBF:

Dehydration binding factor

DirH:

Dirigent protein related to high sugar content

DirL:

Dirigent protein related to low sugar content

LEA:

Late embryogenesis abundant protein

PIC:

Polymorphism information content

SAI:

Soluble acid invertase

SPS:

Sucrose phosphate synthase

Susy:

Sucrose synthase

Sut4 and Sut:

Sugar transporters

TRAP:

Target region amplified polymorphism

References

  • Aitken KS, Li JC, Jackson P, Piperidis G, McIntyre CL (2006) AFLP analysis genetic diversity within Saccharum officinarum and comparison with sugarcane varieties. Aust J Agric Res 57:1167–1184

    Article  CAS  Google Scholar 

  • Al-Janabi SM, Forget L, Dookun A (1999) An improved and rapid protocol for the isolation of polysaccharide- and polyphenol-free sugarcane DNA. Plant Mol Biol Rep 17:1–8

    Article  Google Scholar 

  • Alwala S, Suman A, Arro JA, Veremis JC, Kimberg CA (2006) Target region amplification polymorphism for assessing genetic diversity in sugarcane germplasm collections. Crop Sci 46:448–449

    Article  CAS  Google Scholar 

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  CAS  PubMed  Google Scholar 

  • Becelaere GV, Lubbers EL, Paterson AH, Chee PW (2005) Pedigree vs DNA marker-based genetic similarity estimates in cotton. Crop Sci 45:2281–2287

    Article  CAS  Google Scholar 

  • Calsa-Junior T (2005) Análise transcricional de folha e parênquima de colmo de genótipos de cana-de-açúcar (Saccharum spp.) contrastantes para teor de sacarose e estágio de maturação por meio serial (SAGE). PhD thesis. Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba

  • Cordeiro GM, Pan YB, Henry RJ (2003) Sugarcane microsatellites for the assessment of genetic diversity in sugarcane. Plant Sci 165:181–189

    Article  CAS  Google Scholar 

  • Coto O, Cornide MT, Calvo D, Canales E, D’Hont A, Prada F (2002) Genetic diversity among wild sugarcane germplasm from Laos revealed with markers. Euphytica 123:121–130

    Article  CAS  Google Scholar 

  • Cox TS, Kiang YT, Gorman MB, Rodgers DM (1985) Relationship between the coefficient of parentage and genetic similarity in soybean. Crop Sci 25:529–532

    Google Scholar 

  • Creste S, Tulmann-Neto A, Figueira A (2001) Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gel by silver staining. Plant Mol Biol Rep 19:299–306

    Article  CAS  Google Scholar 

  • Daniels J, Roach BT (1987) Taxonomy and evolution. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier Press, Amsterdam, pp 7–84

    Google Scholar 

  • Daniels J, Smith P, Paton N, Williams CA (1975) The origin of the genus Saccharum. Sugarcane Breed News 36:24–39

    Google Scholar 

  • D’Hont A, Lu YH, Deleon DG, Grivet L, Feldmann P, Lannaud C, Glazsmann JC (1994) A molecular approach to unraveling the genetics of sugarcane, a complex polyploidy of the Adropogoneae tribe. Genome 37:222–230

    Article  PubMed  Google Scholar 

  • Efron B (1981) The bootstrap, the jacknife, and the other resampling plans. Society of Indiana Applied Mathematics, Philadelphia

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed  Google Scholar 

  • Glaszmann JC, Lu YK, Lannaud C (1990) Variation of nuclear ribosomal DNA in sugarcane. J Genet Breed 44:191–198

    Google Scholar 

  • Grof CPL, Alberstson PL, Bursle J, Perroux JM, Bonnett GD, Manners JM (2007) Sucrose-phosphate synthase, a biochemical marker of high sucrose accumulation in sugarcane. Crop Sci 47:1530–1539

    Article  CAS  Google Scholar 

  • Hoarau JY, Grivet L, Offmann B, Raboin LM, Diorflar JP, Payet J, Hellmann M, D’Hont A, Glazsmann JC (2002) Genetic dissection of a modern sugarcane cultivar (Saccharum spp). II. Detection of QTLs for yield components. Theor Appl Genet 105:1027–1037

    Article  PubMed  Google Scholar 

  • Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294

    Article  CAS  Google Scholar 

  • Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crop Res 92:277–290

    Article  Google Scholar 

  • Janoo N, Grivet L, Seguin M, Paulet F, Domaingue R, Rao PS, Dookiun A, D’Hont A, Glaszmann JC (1999) Molecular investigation of genetic base of sugarcane cultivars. Theor Appl Genet 99:171–184

    Article  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–561

    Article  CAS  Google Scholar 

  • Lima MLA, Garcia AAF, Oliveira KM, Matsouka S, Arizono A, Souza CL Jr, Souza AP (2002) Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor Appl Genet 104:30–38

    Article  CAS  PubMed  Google Scholar 

  • Lingle SE, Dyer JM (2001) Cloning and expression of sucrose synthase-1 cDNA from sugarcane. J. Plant Physiol 158:129–131

    Article  CAS  Google Scholar 

  • Liu B, Zhang S, Zhu X, Yang Q, Wu S, Mei M, Mauleon R, Leach J, Leung H (2004) Candidate defense genes as predictors of quantitative blast resistance in rice. Mol Plant Microbe Interact 17:1146–1152

    Article  CAS  PubMed  Google Scholar 

  • Messmer MM, Melchinger AE, Herrmann RG, Boppenmaier J (1993) Relationships among early European maize inbreds: comparison of pedigree and RFLP data. Crop Sci 33:944–950

    Article  Google Scholar 

  • Ming R, Wang YW, Draye X, Moore PH, Irvine JE, Paterson AH (2002) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345

    Article  CAS  PubMed  Google Scholar 

  • Nogueira FTS, De-Rosa Junior VE, Ulian EC, Menossi M, Arruda P (2003) RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol 132:1811–1824

    Article  CAS  PubMed  Google Scholar 

  • Pan YB, Cordeiro GM, Richard EP, Henry RJ (2003) Molecular genotyping of sugarcane clones with microsatellite DNA marker. Maydica 48:319–329

    Google Scholar 

  • Pinto LR, Oliveira KM, Marconi T, Garcia AAF, Ulian EC, Souza AP (2006) Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breed 125:378–384

    Article  CAS  Google Scholar 

  • Piperidis G, Christopher MJ, Carroll BJ, Berding N, D’Hont A (2000) Molecular contribution to selection of intergeneric hybrids between sugarcane and wild species Erianthus arundinaceus. Genome 43:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Ramalingam J, Vera Cruz CM, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoldan M, George ML, Cohen MB, Hulbert SH, Leach JE, Leung H (2003) Candidate defense genes from rice, barley and maize and their association with qualitative and quantitative resistance in rice. Mol Plant Microbe Interact 16:14–24

    Article  CAS  PubMed  Google Scholar 

  • Roach BT (1972) Nobilization sugarcane. Proc Int Soc SugarCane Technol 14:206–216

    Google Scholar 

  • Satyavathi CT, Bhat KV, Bharadwaj C, Tiwari SP, Chaudhury VK (2006) AFLP analysis of genetic diversity in Indian soybean [Glycine max (L.) Merr.] varieties. Genet Resour Crop Evol 53:1069–1079

    Article  CAS  Google Scholar 

  • Schenck S, Crepeau MW, Wu KK, Moore PH, Yu Q, Ming R (2004) Genetic diversity and relationships in native Hawaiian Saccharum officinarum Sugarcane. J Hered 95:327–331

    Article  CAS  PubMed  Google Scholar 

  • Selvi A, Nair NV, Noyer JL, Singh NK, Balasundaram N, Bansal KC, Koundal KR, Mohapatra T (2006) AFLP analysis of the phenetic organization and genetic diversity in the sugarcane complex, Saccharum and Erianthus. Genet Resour Crop Evol 53:831–842

    Article  CAS  Google Scholar 

  • Sreenivasan TV, Ahloowalia BS, Heiz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 211–253

    Google Scholar 

  • Sugiharto B, Sakakibara H, Sumadi SugiyamaT (1997) Differential expression of two genes for sucrose-phosphate synthase in sugarcane: molecular cloning of the cDNAs and comparative analysis of gene expression. Plant Cell Physiol 38:961–965

    CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Tienderen PH, Haan AA, Van Der Linden CG, Vosman B (2002) Biodiversity assessment using markers for ecologically important traits. Trends Ecol Evol 17:577–582

    Article  Google Scholar 

  • Tivang JG, Nienhuis J, Smith OS (1994) Estimation of sampling variance of molecular marker data using the bootstrap procedure. Theor Appl Genet 89:259–264

    Article  Google Scholar 

  • Vettore AL, Silva FR, Kemper EL, Arruda P (2001) The libraries that made SUCEST. Genet Mol Biol 24:1–7

    Article  CAS  Google Scholar 

  • Wang LP, Jackson PA, Lu X, Fan YH, Foreman JW, Chen XK, Deng HH, Fu C, Ma L, Aitken S (2008) Evaluation of sugarcane × Saccharum spontaneum progeny for biomass composition and yield components. Crop Sci 48:951–991

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (2005/56711-7) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (fellowship to Klaus A. G. Accoroni). The authors would like to give very special thanks to Vicente Eugênio de Rosa Junior, PhD (in memoriam), who directly participated in the choice of genes used to develop the work herewith.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Creste.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creste, S., Accoroni, K.A.G., Pinto, L.R. et al. Genetic variability among sugarcane genotypes based on polymorphisms in sucrose metabolism and drought tolerance genes. Euphytica 172, 435–446 (2010). https://doi.org/10.1007/s10681-009-0078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-009-0078-2

Keywords