Skip to main content
Log in

Genetic analysis reveals a dominant S locus and an S suppressor locus in natural self-compatible Brassica napus

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A self-incompatible (SI) line, S-1300, and its maintainer 97-wen135, a self-compatible (SC) line, were used to study the inheritance of maintenance for self-incompatibility in B. napus. The ratio of SI plants to SC plants from S-1300 × 97-wen135 F2 and (S-1300 × 97-wen135) × 97-wen135 was 346:260 and 249:232, fitting the expected ratio of 9:7 and 1:1, respectively. Based on these observations, here we propose a genetic model in which two independent loci, S locus and S suppressor locus (sp), are predicted to control the inheritance of maintenance for self-incompatibility in B. napus. The genotypes of S-1300 and 97-wen135 are S 1300 S 1300 sp 1300 sp 1300 and S 135 S 135 sp 135 sp 135 , respectively. S 135 is dominant to S 1300 , but coexistence of sp 1300 and sp 135 fails to suppress S locus. Both S 1300 and S 135 can be suppressed by sp 135 , while sp 1300 can suppress S 135 but not S 1300 . The model contains two characteristics: that a dominant S locus exists in self-compatible B. napus, and that co-suppression will occur when sp loci are heterozygous. The model has been validated by the segregation of S phenotypes in the (S-1300 × 97-wen135) × S-1300, the progenies of SC S-1300 × 97-wen135 F2 plants and DH population developed from S-1300 × 97-wen135 F1. This is the first study to report co-suppression of S suppressor loci in B. napus. The genetic model will be very useful for developing molecular markers linked to maintenance for self-incompatibility and for dissecting the mechanism of SI/SC in B. napus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An CT, Sun WC, Li XC (1989) Studies on overcoming self-incompatibility of rape and crops in Brassica with chemical methods. J Gansu Agric Univ 60(4):29–35 in Chinese

    Google Scholar 

  • Bateman AJ (1955) Self-incompatibility systems in angiosperms.III. Cruciferae. Heredity 9:53–68. doi:10.1038/hdy.1955.2

    Article  Google Scholar 

  • de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants, 2nd edn. Springer, Berlin, pp 1–332

    Google Scholar 

  • Ekuere UU, Parkin IAP, Bowman C, Marshall D, Lydiate DJ (2004) Latent S alleles are widespread in cultivated self-compatible Brassica napus. Genome 42:257–265

    Article  Google Scholar 

  • Fu TD (1981) Production and research of rapeseed in the People’s Republic of China. Eucarpia Cruciferae Newsl 6:6–7

    Google Scholar 

  • Fu TD (1995) Breeding and utilization of rapeseed hybrid, 1st edn. Hubei Science and Technology Press, Wuhan, pp 112–131 in Chinese

    Google Scholar 

  • Fu TD, Liu HL (1975) Preliminary report on breeding of self-incompatible lines of Brassica napus. Oil Crop China 4:77–85

    Google Scholar 

  • Fu TD, Si P, Yang XL, Yang GS (1992) Overcoming self-incompatibility of Brassica napus by salt (NaCl) spray. Plant Breed 109:255–258. doi:10.1111/j.1439-0523.1992.tb00181.x

    Article  Google Scholar 

  • Fujimoto R, Sugimura T, Fukai E, Nishio T (2006) Suppression of expression of a recessive SP11/SCR allele by an untranscribed SP11/SCR allele in Brassica self-incompatibility. Plant Mol Biol 61:577–587. doi:10.1007/s11103-006-0032-9

    Article  PubMed  CAS  Google Scholar 

  • Goring D, Banks P, Beversdorf WD, Rothstein SJ (1992) Use of the polymerase chain reaction to isolate an S-locus glycoprotein cDNA introgressed from Brassica campestris into B. napus ssp. Oleifera. Mol Gen Genet 234:185–192. doi:10.1007/BF00283838

    Article  PubMed  CAS  Google Scholar 

  • Gowers S (1989) Self-incompatibility interactions in Brassica napus. Euphytica 42:99–103. doi:10.1007/BF00042620

    Article  Google Scholar 

  • Kakeda K, Tsukada H, Kowyama Y (2000) A self-compatible mutant S allele conferring a dominant negative effect on the functional S allele in Ipomoea trifida. Sex Plant Reprod 13:119–125. doi:10.1007/s004970000048

    Article  Google Scholar 

  • Liu HL (2000) Genetics and breeding research in rapeseed in China, 1st edn. China Agricultural University Press, Beijing, p 8

    Google Scholar 

  • Liu HL, Fu TD, Yang XN, Wu JS (1981) Preliminary report on the breeding of the maintainer lines and restoring lines of self-incompatible lines in Brassica napus. J Huazhong Agric Univ 3:9–28 in Chinese

    CAS  Google Scholar 

  • Ma CZ, Fu TD, Yang GS, Tu JX, Yang XN, Dan F (1998) Breeding for self-incompatibility lines with double-zero on Brassica napus L. J Huazhong Agric Univ 17(3):211–213 in Chinese

    CAS  Google Scholar 

  • Ma CZ, Jiang YF, Dan F, Dan B, Fu TD (2003) Breeding for maintainer of self-incompatible lines and its potential in Brassica napus L. J Huazhong Agric Univ 22:13–17 in Chinese

    Google Scholar 

  • MacKay GR (1977) The introgression of S-alleles into forage rape, Brassica napus L. from turnip, Brassica campestris L. ssp. rapifera. Euphytica 26:511–519. doi:10.1007/BF00027020

    Article  Google Scholar 

  • Mathias R (1988) An improved in vitro-culture procedure for embryoids derived from isolated microspores of rape (Brassica napus L.). Plant Breed 100:320–322. doi:10.1111/j.1439-0523.1988.tb00259.x

    Article  Google Scholar 

  • Möring S, Horstmann V, Esch E (2005) Development of a molecular CAPS marker for the self-incompatibility locus in Brassica napus and identification of different S alleles. Plant Breed 124:105–110. doi:10.1111/j.1439-0523.2005.01081.x

    Article  Google Scholar 

  • Nakanishi T, Esashi Y, Hinata K (1969) Control of self-incompatibility by CO2 gas in Brassica. Plant Cell Physiol 10:925–927

    CAS  Google Scholar 

  • Nasrallah JB, Nishio T, Nasrallah ME (1991) The self-incompatibility genes of Brassica: expression and the use in genetic ablation of floral tissues. Annu Rev Plant Physiol Plant Mol Biol 42:393–422. doi:10.1146/annurev.pp.42.060191.002141

    Article  Google Scholar 

  • Nou IS, Watanabe M, Isogai A, Hinata K (1993) Comparison of S-alleles and S-glycoproteins between two wild populations of Brassica campestris in Turkey and Japan. Sex Plant Reprod 6:79–86. doi:10.1007/BF00227652

    Article  Google Scholar 

  • Ockendon DJ (1974) Distribution of self-incompatibility alleles and breeding structure of open-pollinated cultivars of Brussels sprouts. Heredity 33:159–171. doi:10.1038/hdy.1974.84

    Article  Google Scholar 

  • Okamoto S, Odashima M, Fujimoto R, Sato Y, Kitashiba H, Nishio T (2007) Self-compatibility in Brassica napus is caused by independent mutations in S-locus genes. Plant J 50:391–400. doi:10.1111/j.1365-313X.2007.03058.x

    Article  PubMed  CAS  Google Scholar 

  • Rahman MH (2005) Resynthesis of Brassica napus L. for self-incompatibility: self-incompatibility reaction, inheritance and breeding potential. Plant Breed 124:13–19. doi:10.1111/j.1439-0523.2004.01045.x

    Article  Google Scholar 

  • Sato Y, Sato K, Nishio T (2006) Interspecific pairs of class II S haplotypes having different recognition specificities between Brassica oleracea and Brassica rapa. Plant Cell Physiol 47:340–345. doi:10.1093/pcp/pci250

    Article  PubMed  CAS  Google Scholar 

  • Takasaki T, Hatakeyama K, Watanabe M, Toriyama K, Isogai A, Hinata K (1999) Introduction of SLG (S Locus glycoprotein) alters the phenotype of endogenous S haplotype, but confers no new haplotype specificity in Brassica rapa L. Plant Mol Biol 40:659–668. doi:10.1023/A:1006274525421

    Article  PubMed  CAS  Google Scholar 

  • Yang GS, Chen CB, Zhou GL, Geng CN, Ma CZ, Tu JX, Fu TD (2001) Genetic analysis of four self-incompatible lines in Brassica napus. Plant Breed 120:57–61. doi:10.1046/j.1439-0523.2001.00551.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Wallace Cowling of the University of Western Australia, and several anonymous reviewers, for helpful suggestions in revising the manuscript. This research was financed by funds from the National Key Basic Research Special Foundation of China (2007CB1090) and supported by the Industry Technology System of Rapeseed in China (NYCYTX-00501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaozhi Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, C., Li, C., Tan, Y. et al. Genetic analysis reveals a dominant S locus and an S suppressor locus in natural self-compatible Brassica napus . Euphytica 166, 123–129 (2009). https://doi.org/10.1007/s10681-008-9846-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9846-7

Keywords

Navigation