Skip to main content
Log in

Description of a new trans-generic Skb-RNase allele in apple

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Polish apple cvs: ‘Ligol’, ‘Odra’ and ‘Primula’ served for studies of self-incompatibility. Basing on available sequence data, a new set of primers upstream and downstream of the hypervariable (HV) region of apple S-RNases were designed. Using the RT-PCR method, cDNA was amplified on RNA isolated from styles. PCR products were cloned and sequenced. A new trans-generic S-RNase allele, designated as Skb (GenBank accession no. EU443101), was discovered in cvs ‘Odra’ and ‘Primula’. Nucleotide sequence alignment revealed that Skb-RNase shows 98% identity to SaucS19-RNase from Sorbus aucuparia and 97% identity to CmonS17-RNase from Crataegus monogyna. The occurrence of extensive intergeneric hybridization among extant Pyrinae is considered since the deduced amino acid sequence of Skb-RNase from M. × domestica showed higher similarity to CmonS17 from C. monogyna, SaucS19-RNase from S. aucuparia, St from Malus transitoria, S5-RNase and S3-RNase from Pyrus pyrifolia, and S40-RNase from P. ussuriensis than to S-alleles from Malus × domestica and all of them are grouped in the same cluster of phylogenetic tree. In respect to extremely high similarities between aforementioned S-RNases it could be possible that these alleles existed before the separation of Malus, Pyrus, Sorbus and Crataegus genera. Within Malus, the Skb-RNase from M. × domestica and St-RNase from M. transitoria show 100% identity of the HV region at the deduced amino acid level, suggesting that these S-RNases diverged more recently than the other Malus S-RNases. In ‘Ligol’, the agronomically most important cultivar in Poland, the S2 and S9 were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  PubMed  CAS  Google Scholar 

  • Banno K, Kumashiro K, Tateishi S, Takamizawa M, Kiura Y, Tokuhisa F, Tanabe K (1993) Breeding of intergeneric hybrids between Japanese pear and the apple. J Jpn Soc Hort Sci 62(1):138–139

    Google Scholar 

  • Broothaerts W (2003) New findings in apple S-genotype analysis resolve previous confusion and request the re-numbering of some S-alleles. Theor Appl Genet 106:703–714

    PubMed  CAS  Google Scholar 

  • Broothaerts W, Janssens GA, Proost P, Broekaert WF (1995) cDNA cloning and molecular analysis of two self-incompatibility alleles from apple. Plant Mol Biol 27:499–511

    Article  PubMed  CAS  Google Scholar 

  • Campbell CS, Evans RC, Morgan DR, Dickinson TA, Arsenault MP (2007) Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): limited resolution of a complex evolutionary history. Pl Syst Evol 266:119–145

    Article  CAS  Google Scholar 

  • Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 2004(20):426–427

    Article  Google Scholar 

  • Entani T, Iwano M, Shiba H, Che FS, Isogai A, Takayama S (2003) Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume: identification of a pollen-expressed F-box gene with allelic diversity. Genes Cells 8:203–213

    Article  PubMed  CAS  Google Scholar 

  • Evans RC, Campbell CS (2002) The origin of the apple subfamily (Rosaceae: Maloideae) is clarified by DNA sequence data from duplicated GBSSI genes. Amer J Bot 89:1478–1484

    Article  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Golz JF, Su V, Clarke AE, Newbigin E (1999) A molecular description of mutations affecting the pollen components of the Nicotiana alata S locus. Genetics 152:1123–1135

    PubMed  CAS  Google Scholar 

  • Godron DA (1874) De l’hybridité dans le genre Sorbier. Revue des Sc Nat 4:443–447

    Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Hauck NR, Yamane H, Tao R, Iezzoni AF (2006) Accumulation of nonfunctional S-haplotypes results in the breakdown of gametophytic self-incompatibility in tetraploid Prunus. Genetics 172:1191–1198

    Article  PubMed  Google Scholar 

  • Horiuchi H, Yanai K, Takagi M, Yano K, Wakabayashi E, Sanda A, Mine S, Ohgi K, Irie M (1998) Primary structure of a base nonspecific ribonuclease from Rhizopus niveus. J Biochem 103:408–418

    Google Scholar 

  • Hua ZH, Kao T-h (2006) Identification and characterization of components of a putative Petunia S-locus F-box containing E3 ligase complex involved in S-RNase-based self-incompatibility. Plant Cell 18:2531–2553

    Article  PubMed  CAS  Google Scholar 

  • Hua ZH, Kao T-h (2008) Identification of major lysine residues of S 3-RNase of Petunia inflata involved in ubiquitin–26S proteasome-mediated degradation in vitro. Plant J 54:1094–1104

    Article  CAS  Google Scholar 

  • Hua ZH, Fields A, Kao Th (2008) Biochemical models for S-RNase-based self-incompatibility. Mol Plant 1(4):575–585

    Article  CAS  Google Scholar 

  • Ide H, Kimura M, Arai M, Funatsu G (1991) The complete amino acid sequence of ribonuclease from the seeds of bitter gourd (Momordica charantia). FEBS Lett 284:161–164

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Igic B, Ushijima K, Yamane H, Hauck NR, Nakano R, Sassa H, Iezzoni AF, Kohn JR, Tao R (2004) Primary structural features of the S haplotype-specific F-box protein, SFB, in Prunus. Sex Plant Reprod 16:235–243

    Article  CAS  Google Scholar 

  • Ioerger TR, Clark AG, Kao T-H (1990) Polymorphism at the selfincompatibility locus in Solanaceae predates speciation. Proc Natl Acad Sci USA 87:9732–9735

    Article  PubMed  CAS  Google Scholar 

  • Irie M (1997) Structures and functions of ribonucleases. Yakugaku Zasshi 117(9):561–582

    PubMed  CAS  Google Scholar 

  • Ishimizu T, Norioka S, Kanai M, Clarke AE, Sakiyama F (1996) Location of cysteine and cystine residues in S-ribonucleases associated with gametophytic self-incompatibility. Eur J Biochem 242:627–635

    Article  PubMed  CAS  Google Scholar 

  • Ishimizu T, Shinkawa T, Sakiyama F, Norioka S (1998) Primary structural features of rosaceous S-RNases associated with gametophytic self-incompatibility. Plant Mol Biol 37:931–941

    Article  PubMed  CAS  Google Scholar 

  • Janssens GA, Goderis IJ, Broekaert WF, Broothaerts W (1995) A molecular method for S allele identification in apple based on allele-specific PCR. Theor Appl Genet 91:691–698

    Article  CAS  Google Scholar 

  • Jost W, Bak H, Glund K, Terpstra P, Beintema JJ (1991) Amino acid sequence of an extracellular, phosphate-starvation-induced ribonuclease from cultured tomato (Lycopersicon esculentum) cells. Eur J Biochem 198:1–6

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Mukai Y (2004) Allelic diversity of S-RNase at the self-incompatibility locus in natural flowering cherry populations (Prunus lannesiana var. speciosa). Heredity 92:249–256

    Article  PubMed  CAS  Google Scholar 

  • Kawata Y, Sakiyama F, Hayashi F, Kyogoku Y (1989) Identification of two essential histidine residues of ribonuclease T2 from Aspergillus oryzae. Eur J Biochem 187:255–262

    Article  Google Scholar 

  • Kawata Y, Sakiyama F, Tamaoki H (1998) Amino acid sequence of ribonuclease T2 from Aspergillus oryzae. Eur J Biochem 176:683–697

    Article  Google Scholar 

  • Kurihara H, Nonaka T, Mitsui Y, Ohgi K, Irie M, Nakamura KT (1996) The crystal structure of ribonuclease Rh from Rhizopus niveus at 2.0 Å resolution. J Mol Biol 255:310–320

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23(21):2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Bryant SH (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:D192–D196

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Kitahara K (2000) Discovery of a new self-incompatibility allele in apple. HortScience 35:1329–1332

    CAS  Google Scholar 

  • Matsumoto S, Suzuki M, Kitahara K, Soejima J (2000) Possible involvement of a new S-gene ‘St-RNase’ (accession no. AB035928) in the wild apple possessing high similarity to the ‘S3-’ and ‘S5-RNase’ in the Japanese pear. Plant Physiol 122:620

    Google Scholar 

  • Matsumoto S, Kitahara K, Komatsu H, Soejima J (2001) A functional S-allele, ‘Sg’, in the wild apple possessing a single amino acid, S-RNase ‘Sg’-RNase’, different from ‘Sg-RNase’ in Malus × domestica cultivars. J Hortic Sci Biotechnol 76(2):163–166

    CAS  Google Scholar 

  • Matsuura T, Sakai H, Unno M, Ida K, Sato M, Sakiyama F, Norioka S (2001) Crystal structure at 1.5-Å resolution of Pyrus pyrifolia pistil ribonuclease responsible for gametophytic self-incompatibility. J Biol Chem 276(48):45261–45269

    Article  PubMed  CAS  Google Scholar 

  • McClure BA, Franklin-Tong V (2006) Gametophytic self-incompatibility: understanding the cellular mechanisms involved in “self” pollen tube inhibition. Planta 224:233–245

    Article  PubMed  CAS  Google Scholar 

  • McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:20–25

    Article  Google Scholar 

  • Nelson-Jones EB, Briggs D, Smith AG (2002) The origin of intermediate species of the genus Sorbus. Theor Appl Genet 105:953–963

    Article  PubMed  CAS  Google Scholar 

  • Norioka N, Norioka S, Ohnishi Y, Ishimizu T, Oneyama C, Nakanishi T, Sakiyama F (1996) Molecular cloning and nucleotide sequences of cDNAs encoding S-allele specific stylar RNases in a self-incompatible cultivar and its self-compatible mutant of Japanese pear, Pyrus pyrifolia Nakai. J Biochem 120:335–345

    PubMed  CAS  Google Scholar 

  • Oddou-Muratorio S, Petit RJ, Guerroue BL, Guesnet D, Demesure B (2001) Pollen- versus seed-mediated gene flow in a scattered forest tree species. Evolution 55:1123–1135

    PubMed  CAS  Google Scholar 

  • Ohgi K, Horiuchi H, Watanabe H, Iwama M, Takagi M, Irie M (1992) Role of Asp51 and GlulO5 in the enzymatic activity of a ribonuclease from Rhizopus niveus. J Biochem 113:219–224

    Google Scholar 

  • Ohgi K, Iwama M, Ogawa Y, Hagiwara C, Ono E, Kawaguchi R, Kanazawa C, Irie M (1996) Enzymatic activities of several K108 mutants of ribonuclease (RNase) Rh isolated from Rhizopus niveus. Biol Pharm Bull 19:1080–1082

    PubMed  CAS  Google Scholar 

  • Ortega E, Bošković RI, Sargent DJ, Tobutt KR (2006) Analysis of S-RNase alleles in almond (Prunus dulcis): characterization of new sequences, resolution of synonyms and evidence of intragenic recombination. Mol Genet Genomics 276:413–426

    Article  PubMed  CAS  Google Scholar 

  • Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinsos TA, Campbell CS (2007) Phylogeny and classification of Rosaceae. Pl Syst Evol 266:5–43

    Article  Google Scholar 

  • Przybyla AA, Kantorowicz-Bąk M (2005) New Polish cultivars of apples. Proc of Int Sc Conf Environmentally Friendly Fruit Growing 222:15–19

    Google Scholar 

  • Qiao H, Wang F, Zhao L, Zhou J, Lai Z, Zhang Y, Robbins TP, Xue Y (2004a) The F-box protein AhSLF-S2 controls the pollen function of S-RNase-based self-incompatibility. Plant Cell 16:2307–2322

    Article  PubMed  CAS  Google Scholar 

  • Qiao H, Wang F, Zhao L, Zhou J, Huang J, Zhang Y, Xue Y (2004b) The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell 16:582–595

    Article  PubMed  CAS  Google Scholar 

  • Richards FM, Wyckoff HW (1971) Bovine pancreatic ribonuclease. In: Boyer PD (ed) The enzymes, 4th edn. Academic Press, New York, pp 647–806

    Google Scholar 

  • Richman AD, Kohn JR (1996) Learning from rejection: the evolutionary biology of single-locus incompatibility. Trends Ecol Evol 11:497–502

    Article  Google Scholar 

  • Robertson KR, Phipps JB, Rohrer JR, Smith PG (1991) A synopsis of genera of the Maloideae (Rosaceae). Syst Bot 16:376–394

    Article  Google Scholar 

  • Sassa H, Nishio T, Kowyama Y, Hirano T, Koba T, Ikehashi H (1996) Self-incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T2/S ribonuclease superfamily. Mol Gen Genet 250:547–557

    PubMed  CAS  Google Scholar 

  • Sassa H, Kakui H, Miyamoto M, Suzuki Y, Hanada T, Ushijima K, Kusaba M, Hirano H, Koba T (2007) S locus F-box Brothers: multiple and pollen-specific F-box genes with S haplotype-specific polymorphisms in apple and Japanese pear. Genetics 175:1869–1881

    Article  PubMed  CAS  Google Scholar 

  • Sax K (1931) The origin and relationships of the Pomoideae. J Arnold Arbor 12:3–22

    Google Scholar 

  • Sax K (1932) Chromosome relationships in the Pomoideae. J Arnold Arbor 13:363–367

    Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Shimura I, Ito Y, Seike K (1983) Intergeneric hybrid between Japanese pear and quince. J Jpn Soc Hort Sci 52:243–249

    Article  Google Scholar 

  • Sonneveld T, Tobutt KR, Vaughan SP, Robbins TP (2005) Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Plant Cell 17:37–51

    Article  PubMed  CAS  Google Scholar 

  • Šurbanovsky N, Tobutt KR, Konstantinović M, Maksimović SargentDJ, Stefanović V, Ortega E, Bošković R (2007) Self-incompatibility of Prunus tenella and evidence that reproductively isolated species of Prunus have different SFB alleles coupled with an identical S-RNase allele. Plant J 50:723–724

    Article  Google Scholar 

  • Sutherland BG, Tobutt KR, Robbins TP (2008) Trans-specific S-RNase and SFB alleles in Prunus self-incompatibility haplotypes. Mol Genet Genomics 279:95–106

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Arai J, Inokuchi N, Koyama T, Ohgi K, Irie M, Nakamura KT (2000) Crystal structure of a plant ribonuclease, RNase LE. J Mol Biochem 298:859–873

    CAS  Google Scholar 

  • Tsai D-S, Lee H-S, Post LC, Kreiling KM, Kao T-H (1992) Sequence of an S-protein of Lycopersicon peruvianum and comparison with other solanaceous S-proteins. Sex Plant Reprod 5:256–263

    Article  Google Scholar 

  • Ushijima K, Sassa H, Tao R, Yamane H, Dandekar AM, Gradziel TM, Hirano H (1998) Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Mol Gen Genet 260:261–268

    Article  PubMed  CAS  Google Scholar 

  • Vieira J, Morales-Hojas R, Santos RAM, Vieira CP (2007) Different positively selected sites at the gametophytic self-incompatibility pistil S-RNase gene in the Solanaceae and Rosaceae (Prunus, Pyrus, and Malus). J Mol Evol 65:175–185

    Article  PubMed  CAS  Google Scholar 

  • Westwood MN, Lombard PB, Bjornstad HO (1989) Pear on ‘Winter Banana’ interstem with M. 26 apple rootstock as a compatible combination. HortScience 24:765–767

    Google Scholar 

Download references

Acknowledgments

This research was supported by Warsaw University of Life Sciences—SGGW, Grant No. 504-10-04020011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamila Bokszczanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokszczanin, K., Palucha, A. & Przybyla, A.A. Description of a new trans-generic Skb-RNase allele in apple. Euphytica 166, 83–94 (2009). https://doi.org/10.1007/s10681-008-9839-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9839-6

Keywords

Navigation