Skip to main content
Log in

Biotech crops: technologies, achievements and prospects

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

During the past decade the development and adoption of transgenic technology has progressed rapidly. In 2007, biotech crops were grown by 12 million farmers in 23 countries covering 114.3 million hectares. This progress can be attributed to developments in molecular genetics, plant transformation and regeneration techniques and a better understanding of the underlying processes involved in DNA recombination. While almost every significant crop species has been successfully transformed, in many species the development of rapid, highly efficient, and routine transformation systems is still in progress. The commonly-used methods along with some promising alternative methods of plant transformation are described here. Achievements and future prospect in the areas of developing biotic and abiotic stress-tolerant crop varieties and progress in incorporating nutritional and other useful qualities into plants are also discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zahringer U et al (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748. doi:10.1105/tpc.104.026070

    PubMed  CAS  Google Scholar 

  • Aziz N, Machray GC (2003) Efficient male germ line transformation for transgenic tobacco production without selection. Plant Mol Biol 51:203–211. doi:10.1023/A:1021199718356

    PubMed  CAS  Google Scholar 

  • Beachy RN (1997) Mechanisms and applications of pathogen-derived resistance in transgenic plants. Curr Opin Biotechnol 8:215–220. doi:10.1016/S0958-1669(97)80105-X

    PubMed  CAS  Google Scholar 

  • Berg P (1991) Reverse genetics: its origins and prospects. Biotechnology 9:342–344. doi:10.1038/nbt0491-342

    PubMed  CAS  Google Scholar 

  • Breitler J-C, Meynard D, Boxtel JV, Royer M, Bonnot F, Cambillau L et al (2004) A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.). Transgenic Res 13:271–287. doi:10.1023/B:TRAG.0000034626.22918.0a

    PubMed  CAS  Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W et al (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633. doi:10.1038/nature03309

    PubMed  CAS  Google Scholar 

  • Buning TD, van Bueren ETL, Haring MA, de Vriend HC, Struik PC (2006) ‘Cisgenic’ as a product designation. Nat Biotechnol 24(11):1329–1331. doi:10.1038/nbt1106-1329b

    Google Scholar 

  • Burke JJ, Oliver MJ, Velten JP (1999) Pollen-based transformation system using solid medium. US19970008927[US5929300]. 27-7-1999. The United States of America as represented by the Secretary of Agriculture, Washington, DC

  • Camp WV (2005) Yield enhancement genes: seeds for growth. Curr Opin Biotechnol 16:147–153. doi:10.1016/j.copbio.2005.03.002

    PubMed  Google Scholar 

  • Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288–1292. doi:10.1126/science.2660260

    PubMed  CAS  Google Scholar 

  • Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29. doi:10.1104/pp.108.117887

    PubMed  CAS  Google Scholar 

  • Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in Eubacteria. J Bacteriol 179:3085–3094

    PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x

    PubMed  CAS  Google Scholar 

  • Cluster PD, O’Dell M, Flavell RB (1996) Details of T-DNA structural organization from a transgenic Petunia population exhibiting co-suppression. Plant Mol Biol 32:1197–1203. doi:10.1007/BF00041406

    PubMed  CAS  Google Scholar 

  • Codex Alimentarius Commission (2003) Alinorm 03/34: Joint FAO/WHO food standard programme, Codex Alimentarius Commission, twenty-fifth session, Rome, 30 June–5 July, 2003. Appendix III, Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants and Appendix IV, Annex on the assessment of possible allergenicity, pp 47–60

  • Cohen JI, Quemada H, Frederick R (2003) Food safety and GM crops: implications for developing-country research. In: Food safety in food security and food trade. Focus 10, Brief 16 of 17. International Food Policy Research Institute, Washington, DC, USA. www.ifpri.org

  • Comai L, Facciotti D, Niatt WR, Thompson G, Rose RE, Stalker DM (1985) Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317:741–744. doi:10.1038/317741a0

    CAS  Google Scholar 

  • Conner AJ, Barrell PJ, Baldwin SJ, Lokerse AS, Cooper PA, Erasmuson AK, Nap J-P, Jacobs JME (2007) Intragenic vectors for gene transfer without foreign DNA. Euphytica 154:341–353

    CAS  Google Scholar 

  • Curtis IS (2005) Production of transgenic crops by the floral-dip method. In: Peña L (ed) Transgenic plants: methods and protocols. Methods in Molecular Biology, Vol 286. Humana Press Inc., Totowa, NJ, pp 103–109

  • Daley M, Knauf VC, Summerfelt KR, Turner JC (1998) Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep 17:489–496. doi:10.1007/s002990050430

    CAS  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee S-B (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348. doi:10.1038/nbt0498-345

    PubMed  CAS  Google Scholar 

  • Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91. doi:10.1016/S1360-1385(01)02193-8

    PubMed  CAS  Google Scholar 

  • Day A, Kode V, Madesis P, Iamtham S (2005) Simple and efficient removal of marker genes from plastids by homologous recombination. Methods Mol Biol 286:255–269

    PubMed  CAS  Google Scholar 

  • De Block M, Debrouwer D (1991) Two T-DNA’s co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet 82:257–263. doi:10.1007/BF02190610

    Google Scholar 

  • De Cosa B, Moar W, Lee S-B, Miller M, Daniell H (2001) Overexpression of the BtCry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74. doi:10.1038/83559

    PubMed  Google Scholar 

  • de Vetten N, Wolters AM, Raemakers K, van der Meer I, ter Stege R, Heeres E et al (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442. doi:10.1038/nbt801

    PubMed  Google Scholar 

  • Ebinuma H, Sugita K, Endo S, Matsunaga E, Yamada K (2005) Elimination of marker genes from transgenic plants using MAT vector systems. Methods Mol Biol 286:237–253

    PubMed  CAS  Google Scholar 

  • Ferry N, Edwards MG, Gatehouse JA, Gatehouse AMR (2004) Plant-insect interactions: molecular approaches to insect resistance. Curr Opin Biotechnol 15:155–161. doi:10.1016/j.copbio.2004.01.008

    PubMed  CAS  Google Scholar 

  • Gad AE, Rosenberg N, Altman A (1990) Liposome-mediated gene delivery into plant cells. Physiol Plant 79:177–183. doi:10.1111/j.1399-3054.1990.tb05883.x

    CAS  Google Scholar 

  • Gilbertson L (2003) Cre-lox recombination: cre-active tools for plant biotechnology. Trends Biotechnol 21:550–555. doi:10.1016/j.tibtech.2003.09.011

    PubMed  CAS  Google Scholar 

  • Goldsbrough AP, Lastrella CN, Yoder J (1993) Transposition mediated repositioning and subsequent elimination of marker genes from transgenic tomato. Biotechnology 11:1286–1292

    CAS  Google Scholar 

  • Goodman RE, Vieths S, Sampson HA, Hill D, Ebisawa M, Taylor SL et al (2008) Allergenicity assessment of genetically modified crops—what makes sense? Nat Biotechnol 26(1):73–81. doi:10.1038/nbt1343

    PubMed  CAS  Google Scholar 

  • Halfter U, Morris P-C, Willmitzer L (1992) Gene targeting in Arabidopsis thaliana. Mol Gen Genet 231:186–193

    PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193. doi:10.1016/S0958-1669(03)00035-1

    PubMed  CAS  Google Scholar 

  • Hanin M, Volrath S, Bogucki A, Briker M, Ward E, Paszkowski J (2001) Gene targeting in Arabidopsis. Plant J 28:671–677. doi:10.1046/j.1365-313x.2001.01183.x

    PubMed  CAS  Google Scholar 

  • Hansen G, Chilton M-D (1996) “Agrolistic” transformation of plant cells: integration of T-strands generated in planta. Proc Natl Acad Sci USA 93:14978–14983. doi:10.1073/pnas.93.25.14978

    PubMed  CAS  Google Scholar 

  • Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231. doi:10.1016/S1360-1385(99)01412-0

    PubMed  Google Scholar 

  • Hansen G, Shillito RD, Chilton M-D (1997) T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proc Natl Acad Sci USA 94:11726–11730. doi:10.1073/pnas.94.21.11726

    PubMed  CAS  Google Scholar 

  • Harwood WA, Chen D-F, Creissen GP (1996) Transformation of pollen and microspores. In: Mohan Jain S, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Kluwer Academic Publishers, Dordrecht, pp 53–71

    Google Scholar 

  • Heberle-Bors E, Stöger E, Touraev A, Zarsky V, Vicente O (1996) In vitro pollen cultures: progress and perspectives. In: Mohapatra SS, Knox RB (eds) Pollen biotechnology. Gene expression and allergen characterization. Chapman and Hall, New York, pp 85–109

    Google Scholar 

  • Herman L, Jacobs A, Van Montagu M, Depicker A (1990) Plant chromosome/marker gene fusion assay for study of normal and truncated T-DNA integration events. Mol Gen Genet 224:248–256. doi:10.1007/BF00271558

    PubMed  CAS  Google Scholar 

  • Hess D (1987) Pollen based techniques in genetic manipulation. Int Rev Cytol 107:169–190

    Google Scholar 

  • Hess D, Dressler K (1989) Tumor transformation of Petunia hybrida via pollen co-cultured with Agrobacterium tumefaciens. Bot Acta 102:202–207

    CAS  Google Scholar 

  • Hohn B, Puchta H (2003) Some like it sticky: targeting of the rice gene Waxy. Trends Plant Sci 8:51–53. doi:10.1016/S1360-1385(03)00004-9

    PubMed  CAS  Google Scholar 

  • Iida S, Terada R (2004) A tale of two integrations, transgene and T-DNA: gene targeting by homologous recombination in rice. Curr Opin Biotechnol 15:132–138. doi:10.1016/j.copbio.2004.02.005

    PubMed  CAS  Google Scholar 

  • James C (2007) Global status of commercialized biotech/GM crops: 2007. ISAAA Brief No. 37. ISAAA, Ithaca

  • Joshi L, Lopez LC (2005) Bioprospecting in plants for engineered proteins. Curr Opin Plant Biol 8:223–226. doi:10.1016/j.pbi.2005.01.003

    PubMed  CAS  Google Scholar 

  • Kikkert JR (1993) The Biolistic® PDS-1000/He device. Plant Cell Tissue Organ Cult 33:221–226. doi:10.1007/BF02319005

    CAS  Google Scholar 

  • Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141. doi:10.1016/j.copbio.2005.02.006

    PubMed  Google Scholar 

  • Kumar S, Allen GC, Thompson WF (2006) Gene targeting in plants: fingers on the move. Trends Plant Sci 11(4):159–161. doi:10.1016/j.tplants.2006.02.002

    PubMed  CAS  Google Scholar 

  • Langridge P, Brettschneider R, Lazzeri P, Lörz H (1992) Transformation of cereals via Agrobacterium and the pollen pathway: a critical assessment. Plant J 2:631–638. doi:10.1111/j.1365-313X.1992.00631.x

    CAS  Google Scholar 

  • Lee D, Natesan E (2006) Evaluating genetic containment strategies for transgenic plants. Trends Biotechnol 24(3):109–114. doi:10.1016/j.tibtech.2006.01.006

    PubMed  Google Scholar 

  • Liu F, Cao MQ, Yao L, Li Y, Robaglia C, Tourneur C (1998) In planta transformation of pakchoi (Brassica campestris L. ssp. Chinensis) by infiltration of adult plants with Agrobacterium. Acta Hortic 467:187–192

    Google Scholar 

  • Luo H, Keenan RJ (2002) Application of FLP/FRT site-specific DNA recombination system in plants. Genet Eng (NY) 24:1–16

    CAS  Google Scholar 

  • Martinez-Trujillo M, Limones-Briones V, Cabrera-Ponce JL, Herrera-Estrella L (2004) Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Mol Biol Rep 22:63–70. doi:10.1007/BF02773350

    CAS  Google Scholar 

  • Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A, Angelis K et al (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10:697–704

    PubMed  CAS  Google Scholar 

  • McCabe D, Christou P (1993) Direct DNA transfer using electric discharge particle acceleration (ACCELL™ technology). Plant Cell Tissue Organ Cult 33:227–236. doi:10.1007/BF02319006

    CAS  Google Scholar 

  • Melchers LS, Stuiver MH (2000) Novel genes for disease-resistance breeding. Curr Opin Plant Biol 3:147–152. doi:10.1016/S1369-5266(99)00055-2

    PubMed  CAS  Google Scholar 

  • Mengiste T, Paszkowski J (1999) Prospects for the precise engineering of plant genomes by homologous recombination. Biol Chem 380:749–758. doi:10.1515/BC.1999.095

    PubMed  CAS  Google Scholar 

  • Miller M, Tagliani L, Wang N, Berka B, Bidney D, Zhao ZY (2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11:381–396. doi:10.1023/A:1016390621482

    PubMed  CAS  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977. doi:10.1104/pp.108.118232

    PubMed  CAS  Google Scholar 

  • Morell MK, Myers AM (2005) Towards the rational design of cereal starches. Curr Opin Plant Biol 8:204–210. doi:10.1016/j.pbi.2005.01.009

    PubMed  CAS  Google Scholar 

  • Nielsen KM (2003) Transgenic organisms—time for conceptual diversification? Nat Biotechnol 21:227–228. doi:10.1038/nbt0303-227

    PubMed  CAS  Google Scholar 

  • Niu Q-W, Lin S-S, Reyes JL, Chen K-C, Wu H-W, Yeh S-D et al (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24(11):1420–1428. doi:10.1038/nbt1255

    PubMed  CAS  Google Scholar 

  • Oard J (1993) Development of an airgun device for particle bombardment. Plant Cell Tissue Organ Cult 33:247–250. doi:10.1007/BF02319008

    CAS  Google Scholar 

  • Paine AJ, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G et al (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487. doi:10.1038/nbt1082

    PubMed  CAS  Google Scholar 

  • Paszkowski J, Baur M, Bogucki A, Potrykus I (1988) Gene targeting in plants. EMBO J 7:4021–4026

    PubMed  CAS  Google Scholar 

  • Powell AP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT et al (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743. doi:10.1126/science.3457472

    Google Scholar 

  • Puchta H (2003) Marker-free transgenic plants. Plant Cell Tissue Organ Cult 74:123–134. doi:10.1023/A:1023934807184

    CAS  Google Scholar 

  • Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J et al (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745. doi:10.1038/nbt972

    PubMed  CAS  Google Scholar 

  • Risseeuw E, Franke-van-Dijk MEI, Hooykaas PJJ (1997) Gene targeting and instability of Agrobacterium T-DNA loci in the plant genome. Plant J 11:717–728. doi:10.1046/j.1365-313X.1997.11040717.x

    PubMed  CAS  Google Scholar 

  • Ritzenthaler C (2005) Resistance to plant viruses: old issue, new answers? Curr Opin Biotechnol 16:118–122. doi:10.1016/j.copbio.2005.02.009

    PubMed  CAS  Google Scholar 

  • Roa-Rodriguez C, Nottenburg C (2003) Agrobacterium-mediated transformation of plants. CAMBIA technology landscape paper (http://www.bios.net/Agrobacterium)

  • Rommens CM (2004) All-native DNA transformation: a new approach to plant genetic engineering. Trends Plant Sci 9(9):457–464. doi:10.1016/j.tplants.2004.07.001

    PubMed  CAS  Google Scholar 

  • Rommens C, Kishore GM (2000) Exploiting full potential of disease-resistance genes for agricultural use. Curr Opin Biotechnol 11:120–125. doi:10.1016/S0958-1669(00)00083-5

    PubMed  CAS  Google Scholar 

  • Rommens CM, Humara JM, Ye JS, Yan H, Richael C, Zhang L et al (2004) Crop improvement through modification of the plant’s own DNA. Plant Physiol 135:421–431. doi:10.1104/pp.104.040949

    PubMed  CAS  Google Scholar 

  • Rommens CM, Bougri O, Yan H, Humara JM, Owen J, Swords K et al (2005) Plant-derived transfer DNAs. Plant Physiol 139:1338–1349. doi:10.1104/pp.105.068692

    PubMed  CAS  Google Scholar 

  • Rommens CM, Haring MA, Swords K, Davies HV, Belknap WR (2007) The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci 12(9):397–403. doi:10.1016/j.tplants.2007.08.001

    PubMed  CAS  Google Scholar 

  • Rothstein R (1991) Targeting, disruption, replacement and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194:281–301. doi:10.1016/0076-6879(91)94022-5

    PubMed  CAS  Google Scholar 

  • Sanan-Mishra N, Pham HP, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102:509–514. doi:10.1073/pnas.0406485102

    PubMed  CAS  Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Part Sci Technol 5:27–37. doi:10.1080/02726358708904533

    CAS  Google Scholar 

  • Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509. doi:10.1016/0076-6879(93)17086-K

    PubMed  CAS  Google Scholar 

  • Saunders JA, Matthews BF (1995) Pollen electrotransformation in tobacco. In: Nickoloff JA (ed) Methods in molecular biology. Humana Press, Totowa, pp 81–88

  • Sautter C, Waldner H, Neuhaus-Url G, Galli A, Neuhaus G, Potrykus I (1991) Micro-targeting: high efficiency gene transfer using a novel approach for the acceleration of micro-projectiles. Biotechnology 9:1080–1085. doi:10.1038/nbt1991-1080

    PubMed  CAS  Google Scholar 

  • Schaefer DG, Zrÿd J-P (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206. doi:10.1046/j.1365-313X.1997.11061195.x

    PubMed  CAS  Google Scholar 

  • Scheller J, Conrad U (2005) Plant-based material, protein and biodegradable plastic. Curr Opin Plant Biol 8:188–196

    PubMed  CAS  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006a) Do cisgenic plants warrant less stringent oversight? Nat Biotechnol 24:753. doi:10.1038/nbt0706-753

    PubMed  CAS  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006b) Cisgenic plants are similar to traditionally bred plants. EMBO Rep 7(8):750–753. doi:10.1038/sj.embor.7400769

    PubMed  CAS  Google Scholar 

  • Schubert D, Willims D (2006) ‘Cisgenic’ as a product designation. Nat Biotechnol 24(11):1327–1329. doi:10.1038/nbt1106-1327

    PubMed  CAS  Google Scholar 

  • Scott SE, Wilkinson MJ (1999) Low probability of chloroplast movement from oilseed rape (Brassica napus) into wild Brassica rapa. Nat Biotechnol 17:390–392. doi:10.1038/8623

    PubMed  CAS  Google Scholar 

  • Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199. doi:10.1016/S0958-1669(03)00030-2

    PubMed  CAS  Google Scholar 

  • Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163:381–395. doi:10.1016/S0168-9452(02)00133-4

    CAS  Google Scholar 

  • Sheng J, Citovsky V (1996) Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8:1699–1710

    PubMed  CAS  Google Scholar 

  • Shillito R (1999) Methods of genetic transformation: electroporation and polyethylene glycol treatment. In: Vasil I (ed) Molecular improvement of cereal crop. Kluwer, Dordrecht, pp 9–20

    Google Scholar 

  • Smith RH, Hood E (1995) Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 35:301–309

    Google Scholar 

  • Smith CR, Saunders JA, van Wert S, Cheng J-P, Matthews BF (1994) Expression of GUS and CAT activities using electrotransformed pollen. Plant Sci Limerick 104:49–58. doi:10.1016/0168-9452(94)90190-2

    CAS  Google Scholar 

  • Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT et al (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci USA 100(16):9128–9133. doi:10.1073/pnas.1533501100

    PubMed  CAS  Google Scholar 

  • Southgate EM, Davey MR, Power JB, Marchant R (1995) Factors affecting the genetic engineering of plants by microprojectile bombardment. Biotechnol Adv 13:631–651. doi:10.1016/0734-9750(95)02008-X

    PubMed  CAS  Google Scholar 

  • Stoger E, Ma JK-C, Fischer R, Christou P (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16:173. doi:10.1016/j.copbio.2005.01.005

    Google Scholar 

  • Stöger E, Benito Moreno RM, Ylstra B, Vicente O, Heberle-Bors E (1992) Comparison of different techniques for gene transfer into mature and immature tobacco pollen. Transgenic Res 1:71–78. doi:10.1007/BF02513024

    Google Scholar 

  • Stokes T (2001) Gene transformation gets acupuncture. Trends Plant Sci 6:244

    Google Scholar 

  • Struhl K (1983) The new yeast genetics. Nature 305:391–397. doi:10.1038/305391a0

    PubMed  CAS  Google Scholar 

  • Taylor SL (2006) Review of the development of methodology for evaluating the human allergenic potential of novel proteins. Mol Nutr Food Res 50:604–609. doi:10.1002/mnfr.200500275

    PubMed  CAS  Google Scholar 

  • Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030–1034. doi:10.1038/nbt737

    PubMed  CAS  Google Scholar 

  • Tinland B (1996) The integration of T-DNA into plant genomes. Trends Plant Sci 1:178–184. doi:10.1016/1360-1385(96)10020-0

    Google Scholar 

  • Touraev A, Stöger E, Voronin V, Heberle-Bors E (1997) Plant male germ line transformation. Plant J 12:949–958. doi:10.1046/j.1365-313X.1997.12040949.x

    CAS  Google Scholar 

  • Touraev A, Pfosser M, Heberle-Bors E (2001). The Microspore: a haploid multipurpose cell. In: Callow JA (ed) Advances in botanical research. Academic Press, New York, pp 53–109

  • Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA et al (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541. doi:10.1046/j.1365-313x.2000.00757.x

    PubMed  CAS  Google Scholar 

  • Vain P, Keen N, Murillo J, Rathus C, Nemes C, Finer J (1993) Development of the particle inflow gun. Plant Cell Tissue Organ Cult 33:237–246. doi:10.1007/BF02319007

    CAS  Google Scholar 

  • van der Leede-Plegt LM, van de Ven BC, Schilder M, Franken J, van Tunen AJ (1995) Development of pollen-mediated transformation for Nicotiana glutinosa. Transgenic Res 4:77–86. doi:10.1007/BF01969410

    Google Scholar 

  • Van Loon LC, Gerritsen YAM, Ritter CE (1987) Identification, purification and characterisation of pathogenesis-related proteins from virus infected Samsun NN tobacco leaves. Plant Mol Biol 9:593–609. doi:10.1007/BF00020536

    Google Scholar 

  • Vaucheret H, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel J-B et al (1998) Transgene-induced gene silencing in plants. Plant J 16:651–659. doi:10.1046/j.1365-313x.1998.00337.x

    PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132. doi:10.1016/j.copbio.2005.02.001

    PubMed  CAS  Google Scholar 

  • Walden R, Wingender R (1995) Gene-transfer and plant regeneration-techniques. Trends Biotechnol 13:324–331. doi:10.1016/S0167-7799(00)88976-3

    CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. doi:10.1007/s00425-003-1105-5

    PubMed  CAS  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC et al (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094

    PubMed  CAS  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P et al (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305. doi:10.1126/science.287.5451.303

    PubMed  CAS  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621. doi:10.1104/pp.104.040295

    PubMed  CAS  Google Scholar 

  • Zhu T, Peterson DJ, Tagliani L, St Clair G, Baszczynski CL, Bowen B (1999) Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Natl Acad Sci USA 96:8768–8773. doi:10.1073/pnas.96.15.8768

  • Zupan J, Muth TR, Draper O, Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28. doi:10.1046/j.1365-313x.2000.00808.x

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Y. Akhond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhond, M.A.Y., Machray, G.C. Biotech crops: technologies, achievements and prospects. Euphytica 166, 47–59 (2009). https://doi.org/10.1007/s10681-008-9823-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9823-1

Keywords

Navigation