Skip to main content

Advertisement

Log in

Combining ability analysis across environments for some traits in dry bean (Phaseolus vulgaris L.) under low and high soil phosphorus conditions

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Dry bean (Phaseolus vulgaris L.) is an important grain legume for small-scale farmers in eastern Africa who nonetheless, grow beans with limited phosphorus (P) fertilizer supply or none at all. Phosphorus rank second, after nitrogen (N), as the most limiting soil nutrient in bean production in East African soils. This study was conducted to determine combining ability for five polygenic traits in the red mottled, large seeded bean market class, under low and high soil P conditions and two locations. Three parents tolerant to low soil P were hybridized with five well adapted, but non-low P tolerant lines in a diallel mating scheme. The resulting 28 F1 hybrids were evaluated in a randomized complete block design with three replications, under low and high soil P conditions at two sites. There were highly significant (P ≤ 0.001) differences among the genotypes for all the traits under all the study conditions. The GCA mean squares were highly significant (P ≤ 0.001) for these traits, indicating importance of additive effects for both study conditions and sites. The GCA × Environment and SCA × Environment were significant for all the parameters and test conditions. CAL143 had positive GCA effects that were significant; except for 100-seed weight under P stress; for all the traits and under all the study conditions. The negative GCA effects for the none P tolerant parents indicate that they impacted positively in imparting earliness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beebe S, Lynch JP, Galwey N, Tohme J, Ochoa I (1997) A geographical approach to identify phosphorus-efficient genotypes among landraces and wild ancestors of common bean. Euphytica 95:325–336. doi:10.1023/A:1003008617829

    Article  Google Scholar 

  • Black CA (1995) Methods of soil analysis. Agronomy monograph No. 9, Part Two. American Society of Agronomy, Madison, WI, USA

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45:1245–1250. doi:10.1093/jxb/45.9.1245

    Article  CAS  Google Scholar 

  • Christiansen I, Graham PH (2002) Variation in di-nitrogen fixation among Andean bean (Phaseolus vulgaris L.) genotypes grown at low and high levels of phosphorus supply. Field Crops Res 73:133–142. doi:10.1016/S0378-4290(01)00190-3

    Article  Google Scholar 

  • CIAT (1991) Pathology in Africa. CIAT Annual Report, vol 12 no. 2, Cali, Colombia

  • Drijfhout E, van Oeveren JC, Jansen RC (1991) A non-destructive selection method for faster growth at suboptimal temperature in common bean (Phaseolus vulgaris L.). Euphytica 58:65–70. doi:10.1007/BF00035341

    Article  Google Scholar 

  • Ericsson T, Ingestad T (1988) Nutrition and growth of birch seedlings at varied relative phosphorus addition rates. Physiol Plant 72:227–235. doi:10.1111/j.1399-3054.1988.tb05827.x

    Article  CAS  Google Scholar 

  • Ericsson T, Rytter L, Linder S (1992) Nutritional dynamics and requirements of short rotation forests. In: Ford-Robertson M, Sennerby-Forsse H (eds) Ecophysiology of short rotation forest crops. Elsevier Applied Science, London and New York, pp 35–65

    Google Scholar 

  • Fawole I, Gabelman WH, Gerloff GC, Nordheim T (1982) Heritability of efficiency in phosphorus utilization in beans (Phaseolus vulgaris L.) grown under phosphorus stress. J Am Soc Sci 107:94–97

    CAS  Google Scholar 

  • Francis CA (1990) Sustainable agriculture: myths and realities. J Sustain Agric 1:97–106. doi:10.1300/J064v01n01_08

    Article  Google Scholar 

  • Franzluebbers K, Hossner LR, Juo AS (1998) Integrated nutrient management for sustained crop production in sub-Saharan agriculture: a review. TropSoils TAMU Technol Bull 98–03. Texas A&M University, College Station, TX

    Google Scholar 

  • Fredeen AL, Rao IM, Terry N (1989) Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol 89:225–230

    Article  PubMed  CAS  Google Scholar 

  • Graham AH (1981) Some problems of nodulation and symbiotic N-fixation in Phaseolus vulgaris L. A review. Field Crops Res 4:93–112. doi:10.1016/0378-4290(81)90060-5

    Article  Google Scholar 

  • Hernández G, Ramírez M, Valdés-López O, Michelle AMT, Czechowski TG, Wandrey MAS et al (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144:752–767. doi:10.1104/pp.107.096958

    Article  PubMed  CAS  Google Scholar 

  • Kimani JM (2002) Combining ability and heterosis for tolerance to low soil Phosphorus in common beans (Phaseolus vulgaris L.). M Sc Thesis, Faculty of Agriculture, University of Nairobi, Kenya

  • Kimani JM, Tongoona P (2008) The mechanisms of genetic control for low soil nitrogen (N) tolerance in common beans (Phaseolus vulgaris L.). Euphytica 162:193–208. doi:10.1007/s10681-007-9499-y

    Article  CAS  Google Scholar 

  • Kimani JM, Kimani PM, Githiri SM, Kimenju JW (2007) Mode of inheritance of common bean (Phaseolus vulgaris L.) traits for tolerance to low soil phosphorus (P). Euphytica 155:225–234. doi:10.1007/s10681-006-9324-z

    Article  Google Scholar 

  • Lizana C, Wentworth M, Martinez JP, Villegas D, Meneses R, Murchie EH, Pastenes C, Lercari B, Vernieri B, Horton P, Pinto M (2005) Differential adaptation of two varieties of common bean to abiotic stress I. Effects of drought on yield and photosynthesis. J Exp Bot 57:685–697

    Article  CAS  Google Scholar 

  • Lynch J (1998) The role of nutrient-efficient crops in modern agriculture. J Crop Prod 1:241–264. doi:10.1300/J144v01n02_11

    Article  Google Scholar 

  • Lynch J, Beebe SE (1995) Adaptation of beans to low P availability. HortScience 123:152–154

    Google Scholar 

  • Marschner H (1985) Mineral nutrition of higher plants. Academic press, Harcourt Brace, Jovannovich publishers, London

    Google Scholar 

  • Melissa DH, Rosas JC, Brown KM, Lynch JP (2005) Root architectural tradeoffs for water and phosphorus acquisition. Funct Plant Biol 32:737–748. doi:10.1071/FP05043

    Article  Google Scholar 

  • Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131. doi:10.1007/s10681-006-4600-5

    Article  CAS  Google Scholar 

  • Nelson WL, Mehlich A, Winters E (1995) The development, evaluation, and use of soil test for phosphorus availability. Agron J 9:153–158

    Google Scholar 

  • Nienhuis J, Singh SP (1988) Genetics of seed yield and its components in common bean (Phaseolus vulgaris L.) of middle-American origin. II. Genetic variance, heritability and expected response from selection. Plant Breed 101:155–163. doi:10.1111/j.1439-0523.1988.tb00281.x

    Article  Google Scholar 

  • Oliveira WS, Meinhardt LW, Sessitsch A, Tsai SM (1998) Analysis of Phaseolus rhizobium interactions in a subsistence farming system. Plant Soil 204:107–115. doi:10.1023/A:1004387129240

    Article  Google Scholar 

  • Patil VD, Chopde PR (1981) Combining ability analysis over environments in diallel crosses of linseed (Linum usitatissium L.). Theor Appl Genet 60:339–343. doi:10.1007/BF00264325

    Article  Google Scholar 

  • Qiu J, Israel DW (1992) Diurnal starch accumulation and utilization in phosphorus-deficient soybean plants. Plant Physiol 98:316–323

    Article  PubMed  CAS  Google Scholar 

  • Radin JW, Eideobock MP (1984) Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants. Plant Physiol 75:372–377

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale PI, Smith W (2007) Germplasm potential for trait improvement in upland cotton: diallel analysis of within-boll seed yield components. Crop Sci 47:1013–1017. doi:10.2135/cropsci2006.09.0627

    Article  Google Scholar 

  • Rufty TW, Huber SC, Volk RJ (1988) Alterations in leaf carbohydrate metabolism in response to nitrogen stress. Plant Physiol 88:725–730

    Article  PubMed  CAS  Google Scholar 

  • Rufty TW, Israel DW, Volk RJ, Qiu J, Sa T (1993) Phosphate regulation of nitrate assimilation in soybean. J Exp Bot 44:879–891. doi:10.1093/jxb/44.5.879

    Article  CAS  Google Scholar 

  • Sanchez PA (1976) Properties and management of soils in the tropics. Wiley, New York, NY

    Google Scholar 

  • Sanchez PA (2002) Soil fertility and hunger in Africa. Science 295:2019–2020. doi:10.1126/science.1065256

    Article  PubMed  CAS  Google Scholar 

  • Singh SP, Henry T, Muñoz CG, Osorno JM, Takegami JC, Thung MDT (2003) Low soil fertility tolerance in landraces and improved common bean genotypes. Crop Sci 43:110–119

    Google Scholar 

  • Thung M (1991) Bean agronomy in monoculture. In: van Schoonhoven A, Voysest O (eds) Common bean research for crop improvement. CAB/CIAT, Wallingford, CT, USA, pp 737–834

    Google Scholar 

  • United Nations Educational Scientific and Cultural Organization (UNESCO) (1974) FAO-UNESCO soil map of the world: volume 6: Africa. UNESCO, Paris

    Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Gowda CLL, Singh S (2007) Identification of diverse germplasm lines for agronomic traits in a chickpea (Cicer arietinum L.) core collection for use in crop improvement. Field Crops Res 100:320–326. doi:10.1016/j.fcr.2006.08.008

    Article  Google Scholar 

  • Vadez V, Lasso JH, Beck DP, Drevon JJ (1999) Variability of N2-fixation in common bean (Phaseolus vulgaris L.) under P deficiency is related to P use efficiency. Euphytica 106:231–242. doi:10.1023/A:1003512519558

    Article  Google Scholar 

  • Vance CP, Graham PH, Allan DL (2000) Biological nitrogen fixation: phosphorus critical future need. In: Pederosa FO, Hungria M, Yates MG, Newton WE (eds) Nitrogen fixation from molecules to crop productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 509–518

    Google Scholar 

  • Wortmann CS, Lunze L, Ochwoh VA, Lynch J (1995) Bean improvement for low soil fertility in Africa. Afr Crop Sci J 3:469–477

    Google Scholar 

  • Wortmann CS, Kirkby RA, Eledu CA, Allen DJ (1998) An atlas of common bean (Phaseolus vulgaris L.) production in Africa. Centro Internacionale de Agricultura Tropical, Cali, Colombia

    Google Scholar 

  • Yan X, Lynch J, Beebe S (1995a) Genetic variation for phosphorus efficiency of common beans in contrasting soil type: I vegetative response. Crop Sci 35:1086–1093

    Google Scholar 

  • Yan X, Lynch J, Beebe S (1995b) Genetic variation for phosphorus efficiency of common beans in contrasting soil type: II Yield response. Crop Sci 35:1094–1099

    Google Scholar 

Download references

Acknowledgement

This paper is a portion of M. Sc. thesis submitted to University of Nairobi, Kenya, by John M. Kimani. The first author acknowledges Professor P. M. Kimani, Dr. S. M. Githiri and Dr. J. W. Kimenju for their valuable advice during the study. Funding of this research by the University of Nairobi, and provision of breeding materials by East and Central Africa Bean Research Network (ECABREN) under Prof. P. M. Kimani is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Kimani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimani, J.M., Derera, J. Combining ability analysis across environments for some traits in dry bean (Phaseolus vulgaris L.) under low and high soil phosphorus conditions. Euphytica 166, 1–13 (2009). https://doi.org/10.1007/s10681-008-9795-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9795-1

Keywords

Navigation