, Volume 164, Issue 2, pp 593–601 | Cite as

Interspecific cross of Brassica oleracea var. alboglabra and B. napus: effects of growth condition and silique age on the efficiency of hybrid production, and inheritance of erucic acid in the self-pollinated backcross generation

  • Rick A. Bennett
  • Mohan R. Thiagarajah
  • Jane R. King
  • M. Habibur RahmanEmail author


Interspecific hybrids were produced from reciprocal crosses between Brassica napus (2n = 38, AACC) and B. oleracea var. alboglabra (2n = 18, CC) to introgress the zero-erucic acid alleles from B. napus into B. oleracea. The ovule culture embryo rescue technique was applied for production of F1 plants. The effects of silique age, as measured by days after pollination (DAP), and growth condition (temperature) on the efficiency of this technique was investigated. The greatest numbers of hybrids per pollination were produced under 20°/15°C (day/night) at 16 DAP for B. oleracea (♀) × B. napus crosses, while under 15°/10°C at 14 DAP for B. napus (♀) × B. oleracea crosses. Application of the ovule culture technique also increased the efficiency of BC1 (F1 × B. oleracea) hybrid production by 10-fold over in vivo seed set. The segregation of erucic acid alleles in the self-pollinated backcross generation, i.e. in BC1S1 seeds, revealed that the gametes of the F1 and BC1 plants carrying a greater number of A-genome chromosomes were more viable. This resulted in a significantly greater number of intermediate and a smaller number of high-erucic acid BC1S1 seeds.


Brassica napus Brassica oleracea var. alboglabra Ovule culture Erucic acid inheritance 



Funding for this project by Natural Sciences and Engineering Research Council of Canada (NSERC) and Alberta Canola Producers Commission (ACPC) to the last author is gratefully acknowledged. The authors are also thankful for the technical assistance of An Vo of the Canola Program.


  1. Ayotte R, Harney PM, Souza Machado V (1987) The transfer of triazine resistance from Brassica napus L. to B. oleracea L. I. Production of F1 hybrids through embryo rescue. Euphytica 36:615–624. doi: 10.1007/BF00041511 CrossRefGoogle Scholar
  2. Ayotte R, Harney PM, Souza Machado V (1988) The transfer of triazine resistance from Brassica napus L. to B. oleracea L. III. First backcross to parental species. Euphytica 37:189–197. doi: 10.1007/BF00036857 CrossRefGoogle Scholar
  3. Bajaj YPS, Mahajan SK, Labana KS (1986) Interspecific hybridization of Brassica napus and B. juncea through ovary, ovule, and embryo culture. Euphytica 35:103–109. doi: 10.1007/BF00028547 CrossRefGoogle Scholar
  4. Bing DJ, Downey RK, Rakow GFW (1996) Hybridizations among Brassica napus, B. rapa and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis under open pollination conditions in the field. Plant Breed 115:470–473. doi: 10.1111/j.1439-0523.1996.tb00959.x CrossRefGoogle Scholar
  5. Chen BY, Heneen WK (1989) Fatty acid composition of resynthesized Brassica napus L., B. campestris L., and B. alboglabra Bailey with special reference to the inheritance of erucic acid content. Heredity 63:309–314. doi: 10.1038/hdy.1989.103 CrossRefGoogle Scholar
  6. Chen BY, Heneen WK, Jönsson R (1988) Resynthesis of Brassica napus L. through interspecific hybridization between B. alboglabra Bailey and B. campestris L. with special emphasis on seed colour. Plant Breed 101:52–59. doi: 10.1111/j.1439-0523.1988.tb00266.x CrossRefGoogle Scholar
  7. Chiang MS, Chiang BY, Grant WF (1977) Transfer of resistance to race 2 of Plasmodiophora brassicae from Brassica napus to cabbage (B. oleracea var. capitata). I. Interspecific hybridization between B. napus and B. oleracea var. capitata. Euphytica 26:319–326. doi: 10.1007/BF00026993 CrossRefGoogle Scholar
  8. Coventry J, Kott L, Beversdorf WD (1988) Manual for microspore culture technique for Brassica napus. OAC Publication 0489, University of Guelph, CanadaGoogle Scholar
  9. Dorrell DG, Downey RK (1964) The inheritance of erucic acid in rapeseed (Brassica campestris). Can J Plant Sci 44:499–504Google Scholar
  10. Downey RK, Klassen AJ, Stringam GR (1980) Rapeseed and mustard. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. ASA, CSSA, MadisonGoogle Scholar
  11. Fernandez-Escobar J, Dominguez J, Martin A, Fernandez-Martinez JM (1988) Genetics of the erucic acid content in interspecific hybrids of Ethiopian mustard (Brassica carinata Braun) and rapeseed (B. napus L.). Plant Breed 100:310–315. doi: 10.1111/j.1439-0523.1988.tb00257.x CrossRefGoogle Scholar
  12. Frandsen KJ (1947) The experimental formation of Brassica napus L. var. oleifera D.C. and Brassica carinata Braun. Dansk Bot Arkiv 12:1–16Google Scholar
  13. Getinet A, Rakow G, Raney JP, Downey RK (1997) The inheritance of erucic acid content in Ethiopian mustard. Can J Plant Sci 77:33–41Google Scholar
  14. Gowers S (1982) The transfer of characters from Brassica campestris L. to Brassica napus L.: production of clubroot-resistant oil-seed rape (B. napus ssp. oleifera). Euphytica 31:971–976. doi: 10.1007/BF00039237 CrossRefGoogle Scholar
  15. Harvey BL, Downey RK (1964) The inheritance of erucic acid content in rapeseed (Brassica napus). Can J Plant Sci 44:104–111Google Scholar
  16. Inomata N (1993) Embryo rescue techniques for wide hybridization. In: Labana KS, Banga SS, Banga SK (eds) Breeding oilseed Brassicas. Springer-Verlag, BerlinGoogle Scholar
  17. Johnston TD (1974) Transfer of disease resistance from Brassica campestris L. to rape (B. napus L.). Euphytica 23:681–683. doi: 10.1007/BF00022490 CrossRefGoogle Scholar
  18. Jørgensen RB, Andersen B (1994) Spontaneous hybridization between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae): a risk of growing genetically modified oilseed rape. Am J Bot 81:1620–1626. doi: 10.2307/2445340 CrossRefGoogle Scholar
  19. Kondra ZP, Stefansson BR (1965) Inheritance of erucic and eicosenoic acid content of rapeseed oil (Brassica napus). Can J Genet Cytol 7:500–510Google Scholar
  20. Krzymanski J, Downey RK (1969) Inheritance of fatty acid composition in winter forms of rapeseed, Brassica napus. Can J Plant Sci 49:313–319CrossRefGoogle Scholar
  21. Nitsch C, Nitsch JP (1967) The induction of flowering in vitro in stem segments of Plumbago indica L. I. The production of vegetative buds. Planta 72:355–370. doi: 10.1007/BF00390146 CrossRefGoogle Scholar
  22. Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassicas, a review. Opera Bot 55:1–57Google Scholar
  23. Quazi MH (1988) Interspecific hybrids between Brassica napus L. and B. oleracea L. developed by embryo culture. Theor Appl Genet 75:309–318. doi: 10.1007/BF00303970 CrossRefGoogle Scholar
  24. Rahman MH (2001) Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed 120:463–472. doi: 10.1046/j.1439-0523.2001.00640.x CrossRefGoogle Scholar
  25. Rahman MH (2002) Fatty acid composition of resynthesized Brassica napus and trigenomic Brassica void of genes for erucic acid in their A genomes. Plant Breed 121:357–359. doi: 10.1046/j.1439-0523.2002.00711.x CrossRefGoogle Scholar
  26. Rahman MH (2004) Optimum age of siliques for rescue of hybrid embryos from crosses between Brassica oleracea, B. rapa and B. carinata. Can J Plant Sci 84:965–969Google Scholar
  27. Rahman MH (2005) Resynthesis of Brassica napus L. for self-incompatibility: self-incompatibility reaction, inheritance and breeding potential. Plant Breed 124:13–19. doi: 10.1111/j.1439-0523.2004.01045.x CrossRefGoogle Scholar
  28. Rahman MH, Rahman L, Stølen O, Sørensen H (1994) Inheritance of erucic acid content in yellow- and white-flowered yellow sarson × Canadian Brassica campestris L. Acta Agric Scand 44:94–97Google Scholar
  29. Rahman MH, Hawkins G, Avery M, Thiagarajah MR, Sharpe AG, Lange R et al (2007) Introgression of blackleg (Leptosphaeria maculans) resistance into Brassica napus from B. carinata and identification of microsatellite (SSR) markers. Proceedings of the 12th international rapeseed congress, vol 4, pp 47–50Google Scholar
  30. Ripley VL, Beversdorf WD (2003) Development of self-incompatible Brassica napus: (I) introgression of S-alleles from Brassica oleracea through interspecific hybridization. Plant Breed 122:1–5. doi: 10.1046/j.1439-0523.2003.00780.x CrossRefGoogle Scholar
  31. SAS Institute, Inc (1999) SAS/STAT user’s guide, version 8. SAS Institute, Inc, CaryGoogle Scholar
  32. Scarth R, Rimmer SR, McVetty PBE (1992) Reward summer turnip rape. Can J Plant Sci 72:839–840Google Scholar
  33. Song KM, Osborn TC, Williams PH (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). Theor Appl Genet 75:784–794. doi: 10.1007/BF00265606 CrossRefGoogle Scholar
  34. Stringam GR (1971) Genetics of four hypocotyl mutants in Brassica campestris L. Heredity 62:248–250Google Scholar
  35. Takeshita M, Kato M, Tokumasu S (1980) Application of ovule culture to the production of intergeneric or interspecific hybrids in Brassica and Raphanus. Jpn J Genet 55:373–387. doi: 10.1266/jjg.55.373 CrossRefGoogle Scholar
  36. Thormann CE, Ferreira ME, Camargo LEA, Tivang JG, Osborn TC (1994) Comparison of RFLP and RAPD markers to estimating genetic relationships within and among cruciferous species. Theor Appl Genet 88:973–980. doi: 10.1007/BF00220804 CrossRefGoogle Scholar
  37. U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilisation. Jpn J Bot 7:389–452Google Scholar
  38. Zaman MW (1988) Limitations for introgression of yellow seed coat colour in Brassica napus. J Swed Seed Assoc 98:157–161Google Scholar
  39. Zhang GQ, Tang GX, Song WJ, Zhou WJ (2004) Resynthesizing Brassica napus from interspecific hybridization between Brassica rapa and B. oleracea through ovary culture. Euphytica 140:181–187. doi: 10.1007/s10681-004-3034-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Rick A. Bennett
    • 1
  • Mohan R. Thiagarajah
    • 1
  • Jane R. King
    • 1
  • M. Habibur Rahman
    • 1
    Email author
  1. 1.Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations