Euphytica

, 163:533 | Cite as

Changes in the concept of genotype × environment interactions to fit agriculture diversification and decentralized participatory plant breeding: pluridisciplinary point of view

  • D. Desclaux
  • J. M. Nolot
  • Y. Chiffoleau
  • E. Gozé
  • C. Leclerc
Article

Abstract

The standardization of environments (E) encouraged by modern society and by the productivist model of agriculture has resulted in the standardization of genotypes (G) thereby reducing G × E interaction. New societal values call for the diversification of agriculture to fit contrasted environments. This process can be depicted by four models defined by two axes, one socio-economic (individual logics versus collective governance), and the other agro-ecological (reductionist versus systemic approaches). These models differ in (i) their objectives (from improvement in yield to the empowerment of farmers), (ii) their specific expectations with respect to genotypes (from inherited genetic resources to varieties that represent genetic, ethical and social progress), (iii) their specific representations of the environment (E) (from a simple interaction between the bio-physical environment (B) and the crop management (C), to a complex interaction including the competences of the actors (A), outlets (O), regulations (R), society (S)), (iv) their particular relations between G and E (from G × E to G × B × C × A under evolving constraints represented by R × O × S). Taking this diversity into account changes the way plant improvement is considered. Thus, depending on the model, the order, interest and status of the five classic stages of plant improvement (setting objectives, creating variability, selecting, evaluating and disseminating) may be called into question. Between the existing analytical model (Model I) and a holistic model (Model IV) which remains to be developed, lies the challenge of ensuring the sustainability, efficiency and acceptability of plant breeding and resulting innovations. From a simple “statistical parameter” that we, as plant breeders, attempt to reduce, the G × E interaction is becoming an “objective” that we try to predict and valorize. Structuring the different components of E, G and G × E, enables us to extend the basic concept of representivity to both the cultivation conditions and the relational socio-economic positions of the actors involved.

Keywords

Plant breeding Sociotechnical approach Diversity of agricultural models Heterogeneous environments Representivity On-farm selection Ex-situ/in-situ 

Abbreviations

A

Main actors (competences & resources)

B

Bio-physical environment

C

Crop management

O

Outlet, market

G

Genotype

E

Environment

G × E

Genotype × environment interaction

R

Regulations, coordinating structures (public policies, public or private standards, etc.)

References

  1. Aggeri F, Hatchuel A (2003) Ordres socio-économiques et polarisation de la recherche dans l’agriculture: pour une critique des rapports science/société. Sociologie du travail 45(1):113–133CrossRefGoogle Scholar
  2. Allaire G (2002) L’économie de la qualité, en ses secteurs, ses territoires et ses mythes. Géographie, Économie, Société 4:155–180CrossRefGoogle Scholar
  3. Almekinders C, Hardon J (eds) (2006) Bringing farmers back into breeding. Experiences with participatory plant breeding and challenges for institutionalisation. Agromisa Special 5. Agromisa, Wageningen, 125pGoogle Scholar
  4. Atlin GN, Cooper M, Bjornstad A (2001) A comparison of formal and participatory breeding approaches using selection theory. Euphytica 122:463–475CrossRefGoogle Scholar
  5. Beck U (1992) The risk society: toward a new modernity. London, SageGoogle Scholar
  6. Boltanski L, Thévenot L (1991) De la justification. Les économies de la grandeur. Paris, GallimardGoogle Scholar
  7. Bonneuil C, Thomas F (2007) Du maïs hybride aux OGM: une histoire de la génétique végétale à l’INRA. INRA, Paris (in press)Google Scholar
  8. Bonneuil C, Demeulenaere E, Thomas F, Joly PB, Allaire G, Goldringer I (2006) Innover autrement? La recherche face à l’avènement d’un nouveau régime de production et de régulation des savoirs en génétique végétale. In: Gasselin P, Clément O (eds) Quelles variétés et semences pour des agricultures paysannes durables? INRA, Paris, pp 29–51Google Scholar
  9. Bourdeix R, Leclerc C, Thampan PH, Beaudouin L, Joly HI (2008) Modern and natural coconut hybrids in southern India: natural, technical and social facts. J Ethnobiol 32 (in press)Google Scholar
  10. Bourdieu P (1979) La distinction. Critique sociale du jugement. Les Editions de Minuit, coll. Le sens commun., ParisGoogle Scholar
  11. Brancourt-Hulmel M, Lecomte C, Meynard JM (1999) A diagnosis of yield-limiting factors on probe genotypes for characterizing environments in winter wheat trials. Crop Sci 39:1798–1808Google Scholar
  12. Callon M, Lascoumes P, Barthe Y (2001) Agir dans un monde incertain. Essai sur la démocratie technique. Le Seuil, ParisGoogle Scholar
  13. Cauderon A (2003) Un cas d’école dans l’accueil d’une innovation: les OGM. Semences et progrès 115:15–18Google Scholar
  14. Cecarelli S, Grando S, Tutwiler R, Baha J, Martini AM, Salahieh H, Goodchild A, Michael M (2000) A methodological study on participatory barley breeding. I. Selection phase. Euphytica 111:91–104CrossRefGoogle Scholar
  15. Cecarelli S, Grando S, Bailey E, Amri A, El Felah M, Nassif F, Rezgui S, Yahyaoui A (2001) Farmer participation in barley breednig in Syria, Marocco and Tunisia. Euphytica 122:521–536CrossRefGoogle Scholar
  16. Chiffoleau Y (2006) La selection participative du Sud au Nord. In Quelles variétés et semences pour des agricultures paysannes et durables? Dossiers de l’environnement de l’INRA n°30, Paris, 186pGoogle Scholar
  17. Chiffoleau Y, Desclaux D (2006) Participatory plant breeding: the best way to breed for sustainable agriculture? Int J Sustain Agric 4(2):119–130Google Scholar
  18. Cochet H, Devienne S (2006) Operation and economic performance of farming systems: a regional approach. Cah Agric 15(6):578–583Google Scholar
  19. Denis JB (1988) Two-way analysis using covariates. Statistics 19:123–132CrossRefGoogle Scholar
  20. Desclaux D (1996) De l’intérêt de génotypes révélateurs de facteurs limitants dans l’analyse des interactions génotype*milieu chez le soja (Glycine max L. Merrill). Thèse Institut national polytechnique de Toulouse. Spécialité: Biologie et Technologie végétales, 196pGoogle Scholar
  21. Desclaux D (2000) Adaptability and stability of soybean genotypes: interest of environmental diagnosis from soybean ‘black box’. In: Gallais A, Dillmann C, Goldringer I (eds) Eucarpia: quantitative genetics and breeding methods: the way ahead. Ed. INRA, 331pGoogle Scholar
  22. Desclaux D (2005) Participatory plant breeding for organic cereals. In: Proceedings of the Eco-Pb workshop on organic plant breeding strategies and the use of molecular markers. Driebergen(NK), 2006, pp 17–23Google Scholar
  23. Desclaux D, Hedont M (eds) (2006) In: Proceedings of ECO-PB workshop: “participatory plant breeding: relevance for organic agriculture?” Ed. ITAB, 112pGoogle Scholar
  24. Desroches H (1976) Le Projet coopératif. Son utopie et sa pratique, Ses appareils et ses réseaux. Ses espérances et ses déconvenues. Éd. Ouvrières, 464pGoogle Scholar
  25. Dieng I (2003) Prédiction de l’interaction génotype*environnement à partir d’indices variétaux de sensibilité à la sécheresse et de bilan hydrique à l’aide d’un modèle de régression factorielle dans les essais d’arachide au Sénégal. Université de Montpellier II et CIRAD/CA, Montpellier, 51pGoogle Scholar
  26. Dieng I, Gozé E, Sabatier R (2006) Prediction of crop response by linearisation about control approximation. C. r., biol. (ISSN 1631-0691) 329(3):148–155. Elsevier, Paris, FranceGoogle Scholar
  27. Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant breeding programme. Aust J Agric Res 14:742–754CrossRefGoogle Scholar
  28. Fisher RA (1938) Statistical methods for research workers, 7eme ed. OLIVER & BOYD, EdinburgGoogle Scholar
  29. Friedberg E (1988) L’analyse stratégique des organisations. Pour, numéro spécial, n°128Google Scholar
  30. Gallais A (1990) Théorie de la sélection en Amélioration des Plantes. Ed. Masson, 588pGoogle Scholar
  31. Gallais (2006) Preface. In: Lançon J, Floquet A, Weltzien E (eds) Partenaires pour construire des projets de sélection participative. Ed CIRAD, 207pGoogle Scholar
  32. Gauch HG (1992) Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier, Amsterdam, 278pGoogle Scholar
  33. Gibson RH, Pearce S, Morris RJ, Symondson WOC, Memmott J (2007) Plant diversity and land use under organic and conventional agriculture: a whole-farm approach. J Appl Ecol 44(4):792–803CrossRefGoogle Scholar
  34. Giddens A (1991) Modernity and self-identity. Self and society in the late modern age. Polity, CambridgeGoogle Scholar
  35. Goldringer I, Galic N, Rousselle Y, Demeulenaere E, Bonneuil C, Payement J, Berthellot JF, Chesneau V, Mercier F, Ferté H, Pommart A, Zaharia H (2007) On-farm dynamic management of wheat populations/varieties in organic agriculture: a way to valorize G × E interactions. In: Proc. of Eucarpia symposium, 7–9 Nov., WageningenGoogle Scholar
  36. Gozé E (1992) Détermination de la dimension des réseaux d’essais. Coton Fibres Trop 47(2):81–94Google Scholar
  37. Hubert B (2002) Agricultures et développement durable. Enjeux de connaissances et attitudes de recherche. Dossiers de l’Environnement de l’INRA, n°27, pp 41–54Google Scholar
  38. Kastler G (2006) Les semences paysannes. In Quelles variétés et semences pour des agricultures paysannes et durables? Dossiers de l’environnement de l’INRA n°30, Paris, 186pGoogle Scholar
  39. Lammerts van Bueren ET, Struik PC, Tiemens-Hulscher M, Jacobsen E (2003) The concepts of intrinsic value and integrity of plants in organic plant breeding and propagation. Crop Sci 43:1922–1929Google Scholar
  40. Lefort PL, Guy P, Buson M, Poisson C (1979) Aspects biologiques de l’interaction génotypes × milieux. Recherche de définitions. Implications en amélioration des plantes. Le tocsin du radiateur 79(1):15–24, Ed INRAGoogle Scholar
  41. Le Guyader (2006) In rapport d’activité. Comité d’éthique et de précaution de l’INRA et de l’IFREMER. COMEPRA, ed INRAGoogle Scholar
  42. Nolot JM (1994) Parcours d’élaboration du rendement. In CR Réunion Sci.gpe céréales, Dijon, mars 94, ed INRAGoogle Scholar
  43. Paillotin G (2006) In Rapport d’activité—Comité d’éthique et de précaution de l’INRA et de l’IFREMER. COMEPRA, ed. INRAGoogle Scholar
  44. Pecqueur B (2007) L’économie territoriale : une autre analyse de la globalisation. L’économie politique n°33, pp 41–52Google Scholar
  45. Pope de Vallavieille C, Belhaj Fraj M, Mille B, Meynard JM (2007) Associations de variétés de blé pour stabiliser le rendement et la qualité de la récolte. In proc. Rencontres du Cirad, Journée d’agronomie, 30 août 2007, ed CIRADGoogle Scholar
  46. Rastoin JL (2007) Quel système alimentaire à l’horizon 2050? Académie d’agriculture de France, ParisGoogle Scholar
  47. Sperling L, Ashby JA, Smith ME, Weltzien E, McGuire S (2001) A framework for analyzing participatory plant breeding approaches and results. Euphytica 122:439–450CrossRefGoogle Scholar
  48. Stengers I (1999) Le développement durable, une nouvelle approche? Alliage, n°40Google Scholar
  49. Sylvander B, Bellon S, Benoit M (2006) Facing the organic reality: the diversity of development models and their consequences on research policies. Paper presented at Joint Organic Congress, Odense, Denmark, May 30–31, 2006Google Scholar
  50. Vinck D (1999) «Les objets intermédiaires dans les réseaux de coopération scientifique. Contribution à la prise en compte des objets dans les dynamiques sociales». Revue Française de Sociologie XL(2):385–414Google Scholar
  51. Von Hippel E (2005) Democratizing innovation. The MIT Press, Cambridge, Massachusettes, 204pGoogle Scholar
  52. White HC (1981) Where do markets come from? Am J Sociol 87(3):517–547CrossRefGoogle Scholar
  53. Witcombe JR, Joshi A, Goyal SN (2003) Participatory plant breeding in maize: a case from Gujurat, India. Euphytica 130:413–422CrossRefGoogle Scholar
  54. Wolfe MS (1997) Variety mixtures: concept and value. In: Wolfe MS (ed) Variety mixtures in theory and practice. European Union Variety and Species Mixtures working group of COST Action 817. Online at: http://www.scri.sari.ac.uk/TiPP/Mix/Booklet/default.htm
  55. Yan W, Hunt LA (2001) Interpretation of genotype × environment interaction for winter wheat yield in Ontario. Crop Sci 41:19–25Google Scholar
  56. Yates F, Cochran WG (1938) The analysis of groups of experiments. J Agric Sci 9:556–580CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • D. Desclaux
    • 1
  • J. M. Nolot
    • 2
  • Y. Chiffoleau
    • 3
  • E. Gozé
    • 4
  • C. Leclerc
    • 5
  1. 1.INRA, UMR 1097MontpellierFrance
  2. 2.INRA, UE 802Castanet-TolosanFrance
  3. 3.INRA, UMR 951MontpellierFrance
  4. 4.CIRAD, UPR 102MontpellierFrance
  5. 5.CIRAD, UMR DAPMontpellierFrance

Personalised recommendations