Skip to main content
Log in

Molecular markers: actual and potential contributions to wheat genome characterization and breeding

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The demands for increasing global crop production have prompted the development of new approaches relying on molecular marker technologies to investigate and improve the plant genome. The merits of molecular markers make them valuable tools in a range of research areas. This review describes novel approaches based on modern molecular marker technologies for characterization and utilization of genetic variation for wheat improvement. Large-scale genome characterization by DNA-fingerprinting has revealed no declining trends in the molecular genetic diversity in wheat as a consequence of modern intensive breeding thus opposing the genetic ‘erosion’ hypothesis. A great number of important major genes and quantitative trait loci have been mapped with molecular markers. Marker-assisted selection based on a tight linkage between a marker allele and a gene(s) governing a qualitative or quantitative trait is gaining considerable importance as it facilitates and accelerates cultivar improvement through precise transfer of chromosome regions carrying the gene of interest. The implementations of molecular markers in wheat genotyping, mapping and breeding complemented by specific approaches associated with the complex polyploid nature of common wheat are analyzed and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adhikari TB, Yang X, Cavaletto JR, Hu X, Buechley G, Ohm HW, Shaner G, Goodwin SB (2004a) Molecular mapping of Stb1, a potentially durable gene for resistance to Septoria tritici blotch in wheat. Theor Appl Genet 109:944–953

    Article  PubMed  CAS  Google Scholar 

  • Adhikari TB, Wallwork H, Goodwin SB (2004b) Microsatellite markers linked to the Stb2 and Stb3 genes for resistance to Septoria tritici blotch in wheat. Crop Sci 44:403–1411

    Article  Google Scholar 

  • Adhikari TB, Cavaletto JR, Dubcovsky J, Gieco JO, Schlatter AR, Goodwin SB (2004c) Molecular mapping of the Stb4 gene for resistance to Septoria tritici blotch in wheat. Phytopathology 94:1198–1206

    Article  CAS  PubMed  Google Scholar 

  • Aghaee-Sarbarzeh M, Harjit-Singh, Dhaliwal HS (2001) A microsatellite marker linked to leaf rust resistance transferred from Aegilops triuncialis into hexaploid wheat. Plant Breed 120:259–261

    Article  CAS  Google Scholar 

  • Ahmad M (2002) Assessment of genomic diversity among wheat genotypes as determined by simple sequence repeats. Genome 45:646–651

    Article  PubMed  CAS  Google Scholar 

  • Alamerew S, Chebotar S, Huang X, Röder M, Börner A (2004) Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed by microsatellite markers. Genet Resour Crop Evol 51:559–567

    Article  CAS  Google Scholar 

  • Alexandrova NA, Todorovska EG, Marinova EI, Atanasov A (1999) DNA markers and their application in plant breeding for disease resistance in wheat. Bulg J Agric Sci 5:551–560

    Google Scholar 

  • Anderson JA, Ogihara Y, Sorrells ME, Tanksley SD (1992) Development of a chromosomal arm map for wheat based on RFLP markers. Theor Appl Genet 83:1035–1043

    CAS  Google Scholar 

  • Anderson JA, Waldron BL, Moreno-Sevilla B, Stack RW, Frohberg RC (1998) Detection of Fusarium head blight resistance QTL in wheat using AFLPs and RFLPs. In: Slinkard AE (ed) Proceedings of the 9th International Wheat Genetics Symposium, University of Saskatchewan, vol 1. Extension Press, Saskatoon, Saskatchewan, Canada, pp 135–137

  • Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Mitchell Fetch J, Song QJ, Cregan PB, Frohberg RC (2001) DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet 102:1164–1168

    Article  CAS  Google Scholar 

  • Arraiano LS, Worland AJ, Ellerbrook C, Brown JKM (2001) Chromosomal location of a gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid wheat ‘Synthetic 6x’. Theor Appl Genet 103:758–764

    Article  CAS  Google Scholar 

  • Asíns MJ (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291

    Article  Google Scholar 

  • Autrique E, Singh RP, Tanksley SD, Sorrells ME (1995) Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives. Genome 38:75–83

    CAS  PubMed  Google Scholar 

  • Ayala L, Henry M, Gonzalez-de-Leon D, van Ginkel M, Mujeeb-Kazi A, Keller B, Khairallah M (2001) A diagnostic molecular marker allowing the study of Th. intermedium-derived resistance to BYDV in bread wheat segregating populations. Theor Appl Genet 102:942–949

    Article  CAS  Google Scholar 

  • Banks PM, Larkin PJ, Bariana HS, Lagudah ES, Appels R, Waterhouse PM, Brettell RIS, Chen X, Xu HJ, Xin ZY, Qian YT, Zhou XM, Cheng ZM, Zhou GH (1995) The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome 38:395–405

    PubMed  CAS  Google Scholar 

  • Bai G, Kolb FL, Shaner G, Domier LL (1999) Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology 89:343–348

    Article  CAS  PubMed  Google Scholar 

  • Bálint A, Röder MS, Hell R, Galiba G, Börner A (2006) Mapping of QTLs affecting copper tolerance and the Cu, Fe, Mn and Zn concentrations in the shoots of wheat seedlings. Biol Plant 51:129–134

    Article  Google Scholar 

  • Bariana HS, Hayden MJ, Ahmed NU, Bell JA, Sharp PJ, McIntosh RA (2001) Mapping of durable adult plant and seedling resistance to stripe rust and stem rust diseases in wheat. Aust J Agric Res 52:1247–1255

    Article  CAS  Google Scholar 

  • Bariana HS, Brown GN, Ahmed NU, Khatkar S, Conner RL, Wellings CR, Haley S, Sharp PJ, Laroche A (2002) Characterisation of Triticum vavilovii-derived stripe rust resistance using genetic, cytogenetic and molecular analyses and its marker-assisted selection. Theor Appl Genet 104:315–320

    Article  PubMed  CAS  Google Scholar 

  • Barrett B, Bayram M, Kidwell K (2002) Identifying AFLP and microsatellite markers for vernalization response gene Vrn-B1 in hexaploid wheat using reciprocal mapping populations. Plant Breed 121:400–406

    Article  CAS  Google Scholar 

  • Bailey PC, McKibbin RS, Lenton JR, Holdsworth MJ, Flintham JE, Gale MD (1999) Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor Appl Genet 98:281–284

    Article  CAS  Google Scholar 

  • Batey IL, Hayden MJ, Cai S, Sharp PJ, Cornish GB, Morell MK, Appels R (2001) Genetic mapping of commercially significant starch characteristics in wheat crosses. Aust J Agric Res 52:1287–1296

    Article  CAS  Google Scholar 

  • Ben Amer IM, Worland AJ, Korzun V, Börner A (1997) Genetic mapping of QTL controlling tissue-culture response on chromosome 2B of wheat (Triticum aestivum L.) in relation to major genes and RFLP markers. Theor Appl Genet 94:1047–1052

    Article  CAS  Google Scholar 

  • Blanco A, Bellomo MP, Cenci A, De Giovanni C, D’Ovidio R, Iacono E, Laddomada B, Pagnotta MA, Porceddu E, Sciancalepore A, Simeone R, Tanzarella OA (1998) A genetic linkage map of durum wheat. Theor Appl Genet 97:721–728

    Article  CAS  Google Scholar 

  • Boisson M, Mondon K, Torney V, Nicot N, Laine A-L, Bahrman N, Gouy A, Daniel-Vedele F, Hirel B, Sourdille P, Dardevet M, Ravel C, Le Gouis J (2005) Partial sequences of nitrogen metabolism genes in hexaploid wheat. Theor Appl Genet 110:932–940

    Article  PubMed  CAS  Google Scholar 

  • Bonnett DG, Rebetzke GJ, Spielmeyer W (2005) Strategies for efficient implementation of molecular markers in wheat breeding. Mol Breed 15:75–85

    Article  CAS  Google Scholar 

  • Börner A (2002) Gene and genome mapping in cereals. Cell Mol Biol Lett 7:423–429

    PubMed  Google Scholar 

  • Börner A, Röder MS, Korzun V (1997) Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticum aestivum L.). Theor Appl Genet 95:1133–1137

    Article  Google Scholar 

  • Börner A, Korzun V, Worland AJ (1998) Comparative genetic mapping of loci affecting plant height and development in cereals. Euphytica 100:245–248

    Article  Google Scholar 

  • Börner A, Röder MS, Unger O, Meinel A (2000) The detection and molecular mapping of a major gene for non-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor Appl Genet 100:1095–1099

    Article  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Börner A, Korzun V, Khlestkina EK, Dobrovolskaya OB, Pshenichnikova TA, Castro AM, Röder MS (2006a) Genetic stocks in the 21th century – waste or important tool? In: Börner A, Pankova K, Snape JW (eds) EWAC Newsletter 2006, Proceedings of the 13th International EWAC Conference, Prague, Czech Republic, pp 17–22

  • Börner A, Korzun V, Pshenichnikova TA, Snape JW (2006b) Ongoing and future co-operation within EWAC – business meeting. In: Börner A, Pankova K, Snape JW (eds) EWAC Newsletter 2006, Proceedings of the 13th International EWAC Conference, Prague, Czech Republic, pp142–143

  • Bougot Y, Lemoine J, Pavoine MT, Guyomar’ch H, Gautier V, Muranty H, Barloy D (2006) A major QTL effect controlling resistance to powdery mildew in winter wheat at the adult plant stage. Plant Breed 125:550—556

    Article  CAS  Google Scholar 

  • Bovill WD, Ma W, Ritter K, Collard BCY, Davis M, Wildermuth GB, Sutherland MW (2006) Identification of novel QTL for resistance to crown rot in the doubled haploid wheat population ‘W21MMT70’ × ‘Mendos’. Plant Breed 125:538–543

    Article  CAS  Google Scholar 

  • Boyko E, Kalendar R, Korzun V, Fellers J, Korol A, Schulman AH, Gill BS (2002) A high-density genetic map of the Aegilops tauschii genome incorporating retrotrasposons and defense-related genes: insights into cereals chromosome structure and function. Plant Mol Biol 48:767–789

    Article  PubMed  CAS  Google Scholar 

  • Bradburne R, Aitken K, Fish L, Snape JW (2003) QTL analysis using aneuploid and conventionally derived lines for the genetic analysis of grain protein and hardness in wheat. In: Börner A, Snape JW, Law CN (eds) EWAC Newsletter 2003, Proceedings of the 12th International EWAC Conference, Norwich, UK, pp 60–63

  • Brooks SA, See DR, Brown-Guedira G (2006) SNP-based improvement of a microsatellite marker associated with Karnal bunt resistance in wheat. Crop Sci 46:1467–1470

    Article  CAS  Google Scholar 

  • Bryan GJ, Stephenson P, Collins A, Kirby J, Smith JB, Gale MD (1999) Low levels of DNA sequence variation among adapted genotypes of hexaploid wheat. Theor Appl Genet 99:192–198

    Article  CAS  Google Scholar 

  • Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular mapping of QTL for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theor Appl Genet 104:84–91

    Article  PubMed  CAS  Google Scholar 

  • Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, Schneider B, Lemmens M (2003) Molecular mapping of QTL for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor Appl Genet 107:503–508

    Article  PubMed  CAS  Google Scholar 

  • Cadalen T, Sourdille P, Charmet G, Tixier MH, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M (1998) Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population. Theor Appl Genet 96:933–940

    Article  CAS  Google Scholar 

  • Campbell BT, Baenziger PS, Gill KS, Eskridge KM, Budak H, Erayman M, Dweikat I, Yen Y (2003) Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Sci 43:1493–1505

    Article  CAS  Google Scholar 

  • Carbonell EA, Asíns MJ, Baselga M, Balansard E, Gerig TM (1993) Power studies in the estimation of genetic parameters and the localization of quantitative trait loci for backcross and doubled haploid populations. Theor Appl Genet 86:411–416

    Article  Google Scholar 

  • Castro AM, Vasicek A, Ellerbrook C, Gimenez DO, Tocho E, Tacaliti MS, Clúa A, Snape JW (2004) Mapping quantitative trait loci in wheat for resistance against greenbug and Russian wheat aphid. Plant Breed 123:361–365

    Article  CAS  Google Scholar 

  • Castro AM, Vasicek A, Manifesto M, Gimenez DO, Tacaliti MS, Dobrovolskaya O, Röder MS, Snape JW, Börner A (2005) Mapping antixenosis genes on chromosome 6A of wheat to greenbug and to a new biotype of Russian wheat aphid. Plant Breed 124:229–233

    Article  CAS  Google Scholar 

  • Cenci A, D’Ovidio R, Tanzarella OA, Ceoloni C, Porceddu E (1999) Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet 98:448–454

    Article  CAS  Google Scholar 

  • Chalmers KJ, Campbell AW, Kretschmer J, Karakousis A, Henschke PH, Pierens S, Harker N, Pallotta M, Cornish GB, Shariflou MR, Rampling LR, McLauchlan A, Daggard G, Sharp PJ, Holton TA, Sutherland MW, Apples R, Langridge P (2001) Construction of three linkage maps in bread wheat, Triticum aestivum. Aust J Agric Res 52:1089–1119

    Article  CAS  Google Scholar 

  • Chantret N, Sourdille P, Röder MS, Tavaud M, Bernard M, Doussinault G (2000) Location and mapping of the powdery mildew resistance gene MlRE and detection of a resistance QTL by bulked segregant analysis (BSA) with microsatellites in wheat. Theor Appl Genet 100:1217–1224

    Article  CAS  Google Scholar 

  • Chebotar SV, Röder MS, Börner A, Sivolap YM (2003) Microsatellite analysis of Ukrainian wheat varieties cultivated in 1912–2002. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proceedings of the 10th International Wheat Genetics Symposium, Istituto Sperimentale per la Cerealicoltura, Rome, Italy, vol 1, pp 57–59

  • Chebotar SV, Sourdille P, Bernard M, Röder MS, Börner A, Sivolap YM (2006) Analysis of Ukrainian wheat varieties by using diagnostic marker for Yrns-B1. In: Börner A, Pankova K, Snape JW (eds) EWAC Newsletter 2006, Proceedings of the 13th International EWAC Conference, Prague, Czech Republic, pp 46–51

  • Chen XM, Luo YH, Xia XC, Xia LQ, Chen X, Ren ZL, He ZH, Jia JZ (2005) Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed 124:225–228

    Article  CAS  Google Scholar 

  • Cheong J, Wallwork H, Williams KJ (2004) Identification of a major QTL for yellow leaf spot resistance in the wheat varieties Brookton and Cranbrook. Aust J Agric Res 55:315–319

    Article  Google Scholar 

  • Cherukuri DP, Gupta SK, Charpe A, Koul S, Prabhu KV, Singh RB, Haq QMR, Chauchan SV (2003) Identification of a molecular marker linked to an Agropyron elongatum-derived gene Lr19 for leaf rust resistance in wheat. Plant Breed 122:204–208

    Article  CAS  Google Scholar 

  • Christiansen MJ, Andersen SB, Ortiz R (2002) Diversity changes in an intensively bred wheat germplasm during the 20th century. Mol Breed 9:1–11

    Article  Google Scholar 

  • Coleman RK, Gill GS, Rebetzke GJ (2001) Identification of quantitative trait loci for traits conferring weed competitiveness in wheat (Triticum aestivum L.). Aust J Agric Res 52:1235–1246

    Article  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005a) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Collard BCY, Grams RA, Bovill WD, Percy CD, Jolley R, Lehmensiek A, Wildermuth G, Sutherland MW (2005b) Development of molecular markers for crown rot resistance in wheat: mapping of QTLs for seedling resistance in a ‘2–49’ × ‘Janz’ population. Plant Breed 124:532–537

    Article  CAS  Google Scholar 

  • Cooke RJ, Bredemeijer GMM, Ganal MW, Peeters R, Isaac P, Rendell S, Jackson J, Röder MS, Korzun V, Wendehake K, Areshchenkova T, Dijcks M, Laborie D, Bertrand L, Vosman B (2003) Assessment of the uniformity of wheat and tomato varieties at DNA microsatellite loci. Euphytica 132:331–341

    Article  CAS  Google Scholar 

  • Dedryver F, Jubier MF, Thouvenin J, Goyeau H (1996) Molecular markers linked to the leaf rust resistance gene Lr24 in different wheat cultivars. Genome 39:830–835

    PubMed  CAS  Google Scholar 

  • De la Peña RC, Murray TD, Jones SS (1997) Identification of an RFLP interval containing Pch2 on chromosome 7AL in wheat. Genome 40:249–252

    Google Scholar 

  • Demeke T, Laroche A, Gaudet DA (1996) A DNA marker for the Bt-10 common bunt resistance gene in wheat. Genome 39:51–55

    PubMed  CAS  Google Scholar 

  • Devos KM, Gale MD (1992) The use of random amplified DNA markers in wheat. Theor Appl Genet 84:567–572

    Article  Google Scholar 

  • Devos KM, Gale MD (1997) Comparative genetics in the grasses. Plant Mol Biol 35:3–15

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Liu C, Gale MD (1992) RFLP based genetic map of the homeologous group 3 chromosomes of wheat and rye. Theor Appl Genet 83:931–939

    Article  CAS  Google Scholar 

  • Devos KM, Millan T, Gale MD (1993) Comparative RFLP maps of the homoeologous group 2 chromosomes of wheat, rye and barley. Theor Appl Genet 85:784–792

    CAS  Google Scholar 

  • Diéguez MJ, Altieri E, Ingala LR, Perera E, Sacco F, Naranjo T (2006) Physical and genetic mapping of amplified fragment length polymorphisms and the leaf rust resistance Lr3 gene on chromosome 6BL of wheat. Theor Appl Genet 112:251–257

    Article  PubMed  CAS  Google Scholar 

  • Dobrovolskaya O, Arbuzova VS, Lohwasser U, Röder MS, Börner A (2006) Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum L.). Euphytica 150:355–364

    Article  CAS  Google Scholar 

  • Dobrovolskaya O, Pshenichnikova TA, Arbuzova VS, Lohwasser U, Röder MS, Börner A (2007) Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae. Euphytica 155: 285–293

    Article  CAS  Google Scholar 

  • Donini P, Stephenson P, Bryan GJ, Koebner RMD (1998) The potential of microsatellites for high throughput genetic diversity assessment in wheat and barley. Genet Resour Crop Evol 45:415–421

    Article  Google Scholar 

  • Donini P, Law JR, Koebner RMD, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100:912–917

    Article  Google Scholar 

  • Dreisigacker S, Zhang P, Warburton ML, Van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2004) SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different megaenvironments. Crop Sci 44:381–388

    Article  CAS  Google Scholar 

  • Dreisigacker S, Zhang P, Warburton ML, Skovmand B, Hoisington D, Melchinger AE (2005) Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management. Crop Sci 45:653–661

    Article  CAS  Google Scholar 

  • Dubcovsky J (2004) Marker-assisted selection in public breeding programs. The wheat experience. Crop Sci 44:1895–1898

    Article  Google Scholar 

  • Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvorak J (1996) Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999

    PubMed  CAS  Google Scholar 

  • Dubcovsky J, Lukaszewski AJ, Echaide M, Antonelli EF, Porter DR (1998) Molecular characterisation of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Sci 38:1655–1660

    Article  CAS  Google Scholar 

  • Dudley JW (1993) Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci 33:660–668

    Article  CAS  Google Scholar 

  • Dweikat I, Ohm H, Patterson F, Cambron S (1997) Identification of RAPD markers for 11 Hessian fly resistance genes in wheat. Theor Appl Genet 94:419–423

    Article  CAS  Google Scholar 

  • Dweikat I, Zhang W, Ohm H (2002) Development of STS markers linked to Hessian fly resistance gene H6 in wheat. Theor Appl Genet 105:766–770

    Article  PubMed  CAS  Google Scholar 

  • Eagles HA, Bariana HS, Ogbonnaya FC, Rebetzke GJ, Hollamby GJ, Henry RJ, Henschke PH, Carter M (2001) Implementation of markers in Australian wheat breeding. Aust J Agric Res 52:1349–1356

    Article  CAS  Google Scholar 

  • Eastwood RF, Lagudah ES, Appels R (1994) A directed search for DNA sequence tightly linked to cereal cyst nematode resistance genes in Triticum tauschii. Genome 37:311–319

    CAS  PubMed  Google Scholar 

  • Edwards KJ, Mogg R (2001) Plant genotyping by analysis of Single Nucleotide Polymorphisms In: Henry RJ (ed) Plant genotyping: DNA-fingerprinting of plants, CAB International, Chapter 1, pp 1–13

  • Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) „Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042

    Article  PubMed  CAS  Google Scholar 

  • Ellis MH, Rebetzke GJ, Azanza F, Richards RA, Spielmeyer W (2005) Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet 111:423–430

    Article  PubMed  CAS  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Faris JD, Anderson JA, Francl LJ, Jordahl JG (1997) RFLP mapping of resistance to chlorosis induction by Pyrenophora tritici-repentis in wheat. Theor Appl Genet 94:98–103

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Friesen TL (2005) Identification of quantitative trait loci for race-nonspecific resistance to tan spot in wheat. Theor Appl Genet 111:386–392

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Gill BS (2002) Genomic targeting and high-resolution mapping of the domestication gene Q in wheat. Genome 45:706–718

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C, Messmer M, Schachermayr G, Keller B (1995) Genetic and physical characterization of the Lr1 leaf rust resistance locus in wheat (Triticum aestivum L.). Mol Gen Genet 248:553–562

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C, Keller B (2004) Molecular markers for disease resistance: the example wheat. In: Lörz H, Wenzel G (eds) Molecular marker systems in plant breeding and crop improvement. Biotechnology in agriculture and forestry, vol 55. Springer, Berlin Heidelberg, pp 353–370

    Google Scholar 

  • Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20:3639–3644

    Article  PubMed  CAS  Google Scholar 

  • Flavell AJ, Knox MR, Pearce SR, Ellis THN (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. The Plant J 16:643–650

    Article  CAS  Google Scholar 

  • Francki MG, Ohm HW, Anderson JM (2001) Novel germplasm providing resistance to barley yellow dwarf virus in wheat. Aust J Agric Res 52:1375–1382

    Article  CAS  Google Scholar 

  • Friesen TL, Faris JD (2004) Molecular mapping of resistance to Pyrenophora tritici-repentis race 5 and sensitivity to Ptr ToxB in wheat. Theor Appl Genet 109:464–471

    Article  PubMed  CAS  Google Scholar 

  • Fu Y-B, Peterson GW, Richards KW, Somers D, DePauw RM, Clarke JM (2005) Allelic reduction and genetic shift in the Canadian hard red spring wheat germplasm released from 1845–2004. Theor Appl Genet 110:1505–1516

    Article  PubMed  Google Scholar 

  • Galiba G, Quarrie SA, Sutka J, Morgunov A, Snape JW (1995) RFLP mapping of the vernalisation (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    Article  CAS  Google Scholar 

  • Galiba G, Pecchioni N, Vágújfalvi A, Francia E, Tóth B, Barabaschi D, Barilli S, Crosatti C, Cattivelli L, Stanca MA (2005) Localization of QTLs and candidate genes involved in the regulation of frost resistance in cereals. In: Tuberosa R, Phillips RL, Gale MD (eds) Proceedings of the International Congress: In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution, Bologna, Italy, 2005 Avenue Media, Bologna, Italy, pp 253–266

  • Ganeva G, Korzun V, Landjeva S, Tsenov N, Atanasova M (2005) Identification, distribution and effects on agronomic traits of the semi-dwarfing Rht alleles in Bulgarian common wheat cultivars. Euphytica 145:307–317

    Article  CAS  Google Scholar 

  • Gilsinger J, Kong L, Shen X, Ohm H (2005) DNA markers associated with low Fusarium head blight incidence and narrow flower opening in wheat. Theor Appl Genet 110:1218–1225

    Article  PubMed  CAS  Google Scholar 

  • Groos C, Gay G, Perretant M-R, Gervais L, Bernard M, Dedryver F, Charmet G (2002) Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white x red grain bread-wheat cross. Theor Appl Genet 104:39–47

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Varshney RK, PC Sharma, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390

    Article  CAS  Google Scholar 

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535

    CAS  Google Scholar 

  • Gupta P, Balyan H, Edwards K, Isaac P, Korzun V, Röder M, Gautier M-F, Joudrier P, Schlatter A, Dubcovsky J, De la Peña R, Khairallah M, Penner G, Hayden M, Sharp P, Keller B, Wang R, Hardouin J, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  PubMed  CAS  Google Scholar 

  • Gupta SK, Charpe A, Koul S, Haque QMR, Prabhu KV (2006) Development and validation of SCAR markers co-segregating with an Agropyron elongatum derived leaf rust resistance gene Lr24 in wheat. Euphytica 150:233–240

    Article  CAS  Google Scholar 

  • Hao CY, Zhang XY, Wang LF, Dong YS, Shang XW, Jia JZ (2006) Genetic diversity and core collection evaluations in common wheat germplasm from the Northwestern Spring Wheat Region in China. Mol Breed 17:69–77

    Article  CAS  Google Scholar 

  • Harlan JR (1972) Genetics of disaster. J Environ Qual 1:212–215

    Article  Google Scholar 

  • Hartl L, Weiss H, Zeller FJ, Jahoor A (1993) Use of RFLP markers for the identification of alleles of the Pm3 locus conferring powdery mildew resistance in wheat (Triticum aestivum L.). Theor Appl Genet 86:959–963

    Article  CAS  Google Scholar 

  • Hartl L, Weiss H, Zeller FJ, Jahoor A (1995) Molecular identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). Theor Appl Genet 90:601–606

    Article  Google Scholar 

  • Hartl, L, Mori S, Schwizer G (1998) Identification of a diagnostic molecular marker for the powdery mildew resistance gene Pm4b based on fluorescence labeled AFLPs. In: Slinkard AE (ed) Proceedings of the 9th International Wheat Genetics Symposium, University of Saskatchewan, vol 3. Extension Press, Saskatoon, Saskatchewan, Canada, pp 111–113

  • Helguera M, Khan IA, Dubcovsky J (2000) Development of PCR markers for the wheat leaf rust resistance gene Lr47. Theor Appl Genet 100:1137–1143

    Article  CAS  Google Scholar 

  • Hu XY, Ohm HW, Dweikat I (1997) Identification of RAPD markers linked to the gene Pm1 for resistance to powdery mildew in wheat. Theor Appl Genet 94:832–840

    Article  CAS  Google Scholar 

  • Huang XQ, Hsam SLK, Zeller FJ, Wenzel G, Mohler V (2000) Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101:407–414

    Article  CAS  Google Scholar 

  • Huang X-Q, Röder MS (2003) High-density genetic and physical mapping of the powdery mildew resistance gene Pm24 on chromosome 1D of wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proceedings of the 10th International Wheat Genetics Symposium, Istituto Sperimentale per la Cerealicoltura, Rome, Italy, vol 3, pp 961–963

  • Huang X, Wang L, Xu M, Röder MS (2003a) Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Theor Appl Genet 106:858–865

    PubMed  CAS  Google Scholar 

  • Huang XQ, Cöster H, MW Ganal, Röder MS (2003b) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    PubMed  CAS  Google Scholar 

  • Huang X-Q, Hsam SLK, Mohler V, Röder MS, Zeller FJ (2004) Genetic mapping of three alleles at the Pm3 locus conferring powdery mildew resistance in common wheat (Triticum aestivum L.). Genome 47:1130–1136

    Article  PubMed  CAS  Google Scholar 

  • Imtiaz M, Ahmad M, Cromey MG, Griffin WB, Hampton JG (2004) Detection of molecular markers linked to the durable adult plant stripe rust resistance gene Yr18 in bread wheat (Triticum aestivum L.). Plant Breed 123:401–404

    Article  CAS  Google Scholar 

  • Iwaki K, Nishida J, Yanagisawa T, Yoshida H, Kato K (2002) Genetic analysis of Vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat (Triticum aestivum L.). Theor Appl Genet 104:571–576

    Article  PubMed  CAS  Google Scholar 

  • Jahier J, Abelard P, Tanguy AM, Dedryver F, Rivoal R, Khatkar S, Bariana HS (2001) The Aegilops ventricosa segment on chromosome 2AS of the wheat cultivar VPM1 carries the cereal cyst nematode resistance gene Cre5. Plant Breed 120:125–128

    Article  CAS  Google Scholar 

  • Jefferies SP, Pallotta MA, Paull JG, Karakousis A, Kretschmer JM, Manning S, Islam AKMR, Langridge P, Chalmers KJ (2000) Mapping and validation of chromosome regions conferring boron toxicity tolerance in wheat (Triticum aestivum). Theor Appl Genet 101:767–777

    Article  CAS  Google Scholar 

  • Johnston SJ, Sharp PJ, McIntosh RA, Guillén-Andrade H, Singh RP, Khairallah M (1998) Molecular markers for the Sr2 stem rust resistance gene. In: Slinkard AE (ed) Proceedings of the 9th International Wheat Genetics Symposium, University of Saskatchewan, vol 3. Extension Press, Saskatoon, Saskatchewan, Canada, pp 117–119

  • Joshi SP, Ranjekar PK, Gupta VS (1999) Molecular markers in plant genome analysis. Curr Sci 77:230–240

    CAS  Google Scholar 

  • Kaeppler SM (1997) Quantitative trait locus mapping using sets of near-isogenic lines: relative power comparisons and technical considerations. Theor Appl Genet 95:384–392

    Article  Google Scholar 

  • Kalendar R, Vicient CM, Peleg O, Anamthawat-Jonsson K, Bolshoy A, Schulman AH (2004) Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics 166:1437–1450

    Article  PubMed  CAS  Google Scholar 

  • Kammholz SJ, Campbell AW, Sutherland MW, Hollamby GJ, Martin PJ, Eastwood RF, Barclay I, Wilson RE, Brennan PS, Sheppard JA (2001) Establishment and characterisation of wheat genetic mapping populations. Aust J Agric Res 52:1079–1088

    Article  CAS  Google Scholar 

  • Kato K, Miura H, Akiyama M, Kuroshima M, Sawada S (1998) RFLP mapping of the three major genes, Vrn1, Q and B1 on the long arm of chromosome 5A of wheat. Euphytica 101:91–95

    Article  CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (1999a) QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor Appl Genet 98:472–477

    Article  CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (1999b) Detection of an earliness per se quantitative trait locus in the proximal region of wheat chromosome 5AL. Plant Breed 118:391–394

    Article  CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • Kato K, Nakamura W, Tabiki T, Miura H, Sawada S (2001) Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes. Theor Appl Genet 102:980–985

    Article  CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (2002) Characterization of QEetocs-5A1, a quantitative trait locus for ear emergence time on wheat chromosome 5AL. Plant Breed 121:389–393

    Article  CAS  Google Scholar 

  • Kato K, Sonokawa R, Miura H, Sawada S (2003) Dwarfing effect associated with the threshability gene Q on wheat chromosome 5A. Plant Breed 122:489–492

    Article  CAS  Google Scholar 

  • Khan IA, Awan FS, Ahmad A, Fu Y-B, Iqbal A (2005a) Genetic diversity of Pakistan wheat germplasm as revealed by RAPD markers. Genet Resour Crop Evol 52:239–244

    Article  CAS  Google Scholar 

  • Khan RR, Bariana HS, Dholakia BB, Naik SV, Lagu MD, Rathjen AJ, Bhavani S, Gupta VS (2005b) Molecular mapping of stem and leaf rust resistance in wheat. Theor Appl Genet 111:846–850

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina EK, Salina EA, Pshenichnikova TA, Arbuzova VS, Koval’ SF (2000) Analysis of isogenic lines of the soft wheat carrying dominant alleles of Bg, Hg, and Rg1 genes using microsatellite and protein markers. Genetika 36:1374–1379

    PubMed  CAS  Google Scholar 

  • Khlestkina EK, Pestsova EG, Salina E, Röder MS, Arbuzova VS, Koval’ SF, Börner A (2002) Genetic mapping and tagging of wheat genes using RAPD, STS and SSR markers. Cell Mol Biol Lett 7:795–802

    PubMed  CAS  Google Scholar 

  • Khlestkina EK, Huang XQ, Quenum FJ-B, Chebotar S, Röder MS, Börner A (2004a) Genetic diversity in cultivated plants – loss or stability? Theor Appl Genet 108:1466–1472

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina EK, Röder MS, Efremova TT, Börner A, Shumny VK (2004b) The genetic diversity of old and modern Siberian varieties of common spring wheat as determined by microsatellite markers. Plant Breed 123:122–127

    Article  CAS  Google Scholar 

  • Khlestkina EK, Salina EA (2006) SNP markers: methods of analysis, ways of development and comparison on an example of common wheat. Russian J Genet 42:585–594

    Article  CAS  Google Scholar 

  • Klahr A, Zimmermann G, Wenzel G, Mohler V (2006) Effects of environment, disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross. Euphytica (online first). DOI 10.1007/s1068100692647

  • Kobiljski B, Quarrie S, Denèiæ S, Kirby J, Ivegeš M (2002) Genetic diversity of the Novi Sad wheat core collection revealed by microsatellies. Cell Mol Biol Lett 7:685–694

    PubMed  CAS  Google Scholar 

  • Koebner RMD, Summers RW (2002) The impact of molecular markers on the wheat breeding paradigm. Cell Mol Biol Lett 7:695–702

    PubMed  CAS  Google Scholar 

  • Koebner RMD, Summers RW (2003) 21st century wheat breeding: plot selection or plate detection. Trends in Biotechnology 21:59–63

    Article  PubMed  CAS  Google Scholar 

  • Kojima T, Nagaoka T, Noda K, Ogihara Y (1998) Genetic linkage map of ISSR and RAPD markers in einkorn wheat in relation to that of RFLP markers. Theor Appl Genet 96:37–45

    Article  CAS  Google Scholar 

  • Kong L, Ohm HW, Cambron SE, Williams CE (2005) Molecular mapping determines that Hessian fly resistance gene H9 is located on chromosome 1A of wheat. Plant Breed 124:525—531

    Article  CAS  Google Scholar 

  • Korzun V (2006) What is restriction today: genotype or phenotype? In: Börner A, Pankova K, Snape JW (eds) EWAC Newsletter 2006, Proceedings of the 13th International EWAC Conference, Prague, Czech Republic, pp 23–26

  • Korzun V, Ebmeyer E (2003) Molecular markers and their applications in wheat breeding. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proceedings of the 10th International Wheat Genetics Symposium, Istituto Sperimentrale per la Cerealicoltura, Rome, Italy, vol 1, pp140–143

  • Korzun V, Röder MS, Worland AJ, Börner A (1997a) Intrachromosomal mapping of genes for dwarfing (Rht12) and vernalization response (Vrn1) in wheat by using RFLP and microsatellite markers. Plant Breed 116:227–232

    Article  Google Scholar 

  • Korzun V, Malyshev S, Voylokov A, Börner A (1997b) RFLP-based mapping of three mutant loci in rye (Secale cereale L.) and their relation to homoeologous loci within Gramineae. Theor Appl Genet 95:468–473

    Article  CAS  Google Scholar 

  • Korzun V, Röder MS, Ganal MW, Worland AJ, Law CN (1998) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96:1104–1109

    Article  CAS  Google Scholar 

  • Korzun V, Röder MS, Wendehake K, Pasqualone A, Lotti C, Ganal MW, Blanco A (1999) Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theor Appl Genet 98:1202–1207

    Article  CAS  Google Scholar 

  • Kuchel H, Ye G, Fox R, Jefferies S (2005) Genetic and economic analysis of a targeted marker-assisted wheat breeding strategy. Mol Breed 16:67–78

    Article  Google Scholar 

  • Kuchel H, Langridge P, Mosionek L, Williams K, Jefferies SP (2006) The genetic control of milling yield, dough rheology and baking quality of wheat. Theor Appl Genet 112:1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Kulwal PL, Kumar N, Gaur A, Khurana P, Khurana JP, Tyagi AK, Balyan HS, Gupta PK (2005) Mapping of a major QTL for pre-harvest sprouting tolerance on chromosome 3A in bread wheat. Theor Appl Genet 111:1052–1059

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genetics 33:479–532

    Article  CAS  Google Scholar 

  • Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed 19:163–177

    Article  Google Scholar 

  • Landjeva S, Korzun V, Ganeva G (2006a) Evaluation of genetic diversity among Bulgarian winter wheat (Triticum aestivum L.) varieties during the period 1925–2003 using microsatellites. Genet Resour Crop Evol 53:1605–1614

    Article  CAS  Google Scholar 

  • Landjeva S, Korzun V, Ganeva G (2006b) Temporal trends in the molecular genetic diversity of Bulgarian bread wheat germplasm during the 20th century as revealed by microsatellites. Genet Breed (Sofia) 35(1–2):3–10

    Google Scholar 

  • Landjeva S, Neumann K, Lohwasser U, Börner A (2007) Molecular mapping of genomic regions associated with growth response to osmotic stress in wheat seedlings. Biol Plant (in press)

  • Langridge P, Lagudah ES, Holton TA, Appels R, Sharp PJ, Chalmers KJ (2001) Trends in genetic and genome analyses in wheat: a review. Aust J Agric Res 52:1043–1077

    Article  CAS  Google Scholar 

  • Langridge P, Chalmers K (2004) The principle: identification and application of molecular markers. In: Lörz H, Wenzel G (eds) Molecular marker systems in plant breeding and crop improvement. Biotechnology in agriculture and forestry, vol 55. Springer, Berlin Heidelberg, pp 3–22

    Google Scholar 

  • Law JP, Donini P, Koebner RMD, Reeves JC, Cooke RJ (1998) DNA profiling and plant variety registration. 3: the statistical assessment of distinctness in wheat using amplified fragment length polymorphisms. Euphytica 102:335–342

    Article  CAS  Google Scholar 

  • Lehmensiek A, Campbell AW, Williamson PM, Michalowitz M, Sutherland MW, Daggard GE (2004) QTLs for black-point resistance in wheat and the identification of potential markers for use in breeding programmes. Plant Breed 123:410–416

    Article  CAS  Google Scholar 

  • Leonova I, Pestsova E, Salina E, Efremova T, Röder MS, Börner A (2003) Mapping of the Vrn-B1 gene in Triticum aestivum using microsatellite markers. Plant Breed 122:209–212

    Article  CAS  Google Scholar 

  • Leonova I, Börner A, Budashkina E, Kalinina N, Unger O, Röder MS, Salina E (2004) Identification of microsatellite markers for a leaf rust resistance gene introgressed into common wheat from Triticum timopheevii. Plant Breed 123:93–95

    Article  CAS  Google Scholar 

  • Liu ZY, Sun QX, Ni ZF, Yang TM (1999) Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed 118:215–219

    Article  CAS  Google Scholar 

  • Liu J, Liu D, Tao W, Li W, Wang S, Chen P, Cheng S, Gao D (2000) Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed 119:21–24

    Article  CAS  Google Scholar 

  • Liu XM, Smith CM, Gill BS, Tolmay V (2001a) Microsatellite markers linked to six Russian wheat aphid resistance genes in wheat. Theor Appl Genet 102:504–510

    Article  CAS  Google Scholar 

  • Liu S, Griffey CA, Saghai Maroof MA (2001b) Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar ‘Massey’. Crop Sci 41:1268–1275

    Article  CAS  Google Scholar 

  • Liu ZY, Sun QX, Ni ZF, Nevo E, Yang TM (2002a) Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originated from wild emmer. Euphytica 123:21–29

    Article  CAS  Google Scholar 

  • Liu XM, Smith CM, Gill BS (2002b) Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6. Theor Appl Genet 104:1042–1048

    Article  PubMed  CAS  Google Scholar 

  • Liu XM, Brown-Guedira GL, Hatchett JH, Owuoche JO, Chen M-S (2005a) Genetic characterization and molecular mapping of a Hessian fly-resistance gene transferred from T. turgidum ssp. dicoccum to common wheat. Theor Appl Genet 111:1308–1315

    Article  PubMed  CAS  Google Scholar 

  • Liu XM, Fritz AK, Reese JC, Wilde GE, Gill BS, Chen M-S (2005b) H9, H10, and H11 compose a cluster of Hessian fly-resistance genes in the distal gene-rich region of wheat chromosome 1AS. Theor Appl Genet 110:1473–1480

    Article  PubMed  CAS  Google Scholar 

  • Liu XM, Gill BS, Chen M-S (2005c) Hessian fly resistance gene H13 is mapped to a distal cluster of resistance genes in chromosome 6DS of wheat. Theor Appl Genet 111:243–249

    Article  PubMed  CAS  Google Scholar 

  • Lohwasser U, Röder MS, Börner A (2005) QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.). Euphytica 143:247–249

    Article  CAS  Google Scholar 

  • Lotti C, Salvi S, Pasqualone A, Tuberosa R, Blanco A (2000) Integration of AFLP markers into an RFLP-based map of durum wheat. Plant Breed 119:393–401

    Article  CAS  Google Scholar 

  • Ma H-X, Bai G-H, Carver BF, Zhou L-L (2005) Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66. Theor Appl Genet 112:51–57

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Zhou R, Dong Y, Wang L, Wang X, Jia J (2001) Mollecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica 120:219–226

    Article  CAS  Google Scholar 

  • Ma ZQ, Gill BS, Sorrells ME, Tanksley SD (1993) RFLP markers linked to two Hessian fly-resistance genes in wheat (Triticum aestivum L.) from Triticum tauschii (Coss.) Schmal. Theor Appl Genet 85:750–754

    Article  CAS  Google Scholar 

  • Ma ZQ, Sorrells ME, Tanksley SD (1994) RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3 and Pm4 in wheat. Genome 37:871–875

    CAS  PubMed  Google Scholar 

  • Ma ZQ, Wei J-B, Cheng S-H (2004) PCR-based markers for the powdery mildew resistance gene Pm4a in wheat. Theor Appl Genet 109:140–145

    Article  PubMed  CAS  Google Scholar 

  • Mago R, Bariana HS, Dundas IS, Spielmeyer W, Lawrence GJ, Pryor AJ, Ellis JG (2005) Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor Appl Genet 111:496–504

    Article  PubMed  CAS  Google Scholar 

  • Manifesto MM, Schlatter AR, Hopp HE, Suárez EY, Dubcovsky J (2001) Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci 41:682–690

    Article  CAS  Google Scholar 

  • Mardi M, Buerstmayr H, Chareyazie B, Lemmens M, Mohammadi SA, Nolz R, Ruckenbauer P (2005) QTL analysis of resistance to Fusarium head blight in wheat using a ‘Wangshuibai’-derived population. Plant Breed 124:329–333

    Article  Google Scholar 

  • Mares DJ, Campbell AW (2001) Mapping components of flour and noodle colour in Australian wheat. Aust J Agric Res 52:1297–1309

    Article  CAS  Google Scholar 

  • Mares D, Cavallaro B, Storlie E, Sutherland M (2004) Markers linked to a grain dormancy QTL in wheat. In: Proceedings of the 4th International Crop Science Congress: new directions for a diverse planet, Brisbane, Australia, 26 Sep–1 Oct 2004, www.cropscience.org.au

  • Marić S, Bolarić S, Martiničic J, Pejić I, Kozumplik V (2004) Genetic diversity of hexaploid wheat cultivars estimated by RAPD markers, morphological traits and coefficients of parentage. Plant Breed 123:366–369

    Article  Google Scholar 

  • Marino CL, Nelson JC, Lu YH, Sorrels ME, Leroy P, Lopes CR, Hart GE (1996) RFLP-based linkage maps of the homeologous group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em Thell.). Genome 39:359–366

    CAS  PubMed  Google Scholar 

  • Marshall DR, Langridge P, Appels R (2001) Wheat breeding in the new century – preface. Aust J Agric Res 52:1–4

    Article  Google Scholar 

  • Martin GB, Williams JGK, Tanksley SD (1991) Rapid identification of markers linked to Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci USA 88:2336–2340

    Article  PubMed  CAS  Google Scholar 

  • Martin EM, Eastwood RF, Ogbonnaya FC (2004) Identification of microsatellite markers associated with the cereal cyst nematode resistance gene Cre3 in wheat. Aust J Agric Res 55:1205–1211

    Article  CAS  Google Scholar 

  • McCartney CA, Brûlé-Babel AL, Lamari L, Somers DJ (2003) Chromosomal location of a race-specific resistance gene to Mycosphaerella graminicola in the spring wheat ST6. Theor Appl Genet 107:1181–1186

    Article  PubMed  CAS  Google Scholar 

  • McCartney CA, Somers DJ, McCallum BD, Thomas J, Humphreys DG, Menzies JG, Brown PD (2005a) Microsatellite tagging of the leaf rust resistance gene Lr16 on wheat chromosome 2BSc. Mol Breed 15:329–337

    Article  CAS  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005b) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome 48:870–883

    PubMed  CAS  Google Scholar 

  • McCartney CA, Somers DJ, Lukow O, Ames N, Noll J, Cloutier S, Humphreys DG, McCallum BD (2006) QTL analysis of quality traits in the spring wheat cross RL4452 × ‘AC Domain’. Plant Breed 125:565–575

    Article  CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (2003) Catalogue of gene symbols for wheat. In: Pogna, NE, Romano M, Pogna EA, Galterio G (eds) Proceedings of the 10th International Wheat Genetics Symposium, Istituto Sperimentale per la Cerealicoltura, Rome, Italy, vol 4

  • Michaels SD, Amasino M (1998) A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. Plant J 14:381–385

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Miedaner T, Reinbrecht C, Lauber U, Schollenberger M, Geiger HH (2001) Effects of genotype and genotype x environment interaction on deoxynivalenol accumulation and resistance to Fusarium head blight in rye, triticale, and wheat. Plant Breed 120:97–105

    Article  CAS  Google Scholar 

  • Miedaner T, Wilde F, Steiner B, Buerstmayr H, Korzun V, Ebmeyer E (2006) Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theor Appl Genet 112:562–569

    Article  PubMed  CAS  Google Scholar 

  • Mohler V, Jahoor A (1996) Allele-specific amplification of polymorphic sites for the detection of powdery mildew resistance loci in cereals. Theor Appl Genet 93:1078–1082

    Article  CAS  Google Scholar 

  • Mohler V, Schwarz G (2004) Genotyping tools in plant breeding: from restriction fragment length polymorphisms to single nucleotide polymorphisms. In: Lörz H, Wenzel G (eds) Molecular marker systems in plant breeding and crop improvement. Biotechnology in agriculture and forestry, vol 55. Springer, Berlin Heidelberg, pp 23–38

    Google Scholar 

  • Mohler V, Zeller FJ, Wenzel G, Hsam SLK (2005) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 9. Gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica 142:161–167

    Article  CAS  Google Scholar 

  • Mori M, Uchino N, Chono M, Kato K, Miura H (2005) Mapping QTLs for grain dormancy on wheat chromosome 3A and the group 4 chromosomes, and their combined effect. Theor Appl Genet 110:1315–1323

    Article  PubMed  CAS  Google Scholar 

  • Mrva K, Mares DJ (2001) Quantitative trait locus analysis of late maturity α-amylase in wheat using the doubled haploid population Cranbrook-Halberd. Aust J Agric Res 52:1267–1273

    Article  CAS  Google Scholar 

  • Nachit M, Elouafi I, Pagnotta MA, El Saleh A, Iacono E, Labhili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut J-M, Tanzarella OA, Porceddu E, Sorrells ME (2001) Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor Appl Genet 102:177–186

    Article  CAS  Google Scholar 

  • Naik S, Gill KS, Prakasa Rao VS, Gupta VS, Tamhankar SA, Pujar S, Gill BS, Ranjekar PK (1998) Identification of a STS marker linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat. Theor Appl Genet 97:535–540

    Article  CAS  Google Scholar 

  • Navakode S, Weidner A, Varshney RK, Röder MS, Börner A (2006) Analysis of wheat/Ae tauschii Coss. introgression lines for aluminium tolerance. Vorträge für Pflanzenzüchtung 70:107–109

    Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995a) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5 and 7. Genetics 141:721–731

    PubMed  CAS  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995b) Molecular mapping of wheat homoeologous group 2. Genome 38:516–524

    CAS  PubMed  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernard M, Leroy P (1995c) Molecular mapping of wheat homeologous group 3. Genome 38:525–533

    CAS  PubMed  Google Scholar 

  • Nelson JC, Singh RP, Autrique JE, Sorrells ME (1997) Mapping genes conferring and suppressing leaf rust resistance in wheat. Crop Sci 37:1928–1935

    Article  CAS  Google Scholar 

  • Nelson JC, Autrique JE, Fuentes-Dávila G, Sorrells ME (1998) Chromosomal location of genes for resistance to Karnal bunt in wheat. Crop Sci 38:231–236

    Article  CAS  Google Scholar 

  • Obert DE, Fritz AK, Moran JL, Sukhwinder Singh, Rudd JC, Menz MA (2005) Identification and molecular tagging of a gene from PI 289824 conferring resistance to leaf rust (Puccinia triticina) in wheat. Theor Appl Genet 110:1439–1444

    Article  PubMed  CAS  Google Scholar 

  • Ogbonnaya FC, Subrahmanyam NC, Moullet O, de Majnik J, Eagles HA, Brown JS, Eastwood RF, Kollmorgen J, Appels R, Lagudah ES (2001) Diagnostic DNA markers for cereal cyst nematode resistance in bread wheat. Aust J Agric Res 52:1367–1374

    Article  CAS  Google Scholar 

  • Orford SE, Law JR, Ganal M, Koebner RMD (2006) Has modern breeding led to a genetic narrowing in European winter wheat? In: Börner A, Pankova K, Snape JW (eds) EWAC Newsletter 2006, Proceedings of the 13th International EWAC Conference, Prague, Czech Republic, pp 98–100

  • Osborne BG, Turnbull KM, Anderssen RS, Rahman S, Sharp PJ, Appels R (2001) The hardness locus in Australian wheat lines. Aust J Agric Res 52:1275–1286

    Article  CAS  Google Scholar 

  • O’Sullivan H, Batley J, Zhu J, Edwards D, Gale M, Edwards KJ (2002) A high-throughput SNuPE assay for genotyping SNPs in the flanking regions of wheat microsatellites In: Proceedings of the International Plant, Animal and Microbe Genomes Conference, San Diego, CA, 12–16 Jan 2002, www.intl-pag.org/10/

  • Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Parker GD, Chalmers KJ, Rathjen AJ, Langridge P (1998) Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theor Appl Genet 97:238–245

    Article  CAS  Google Scholar 

  • Parker GD, Chalmers KJ, Rathjen AJ, Langridge P (1999) Mapping loci associated with milling yield in wheat (Triticum aestivum L.). Mol Breed 5:561–568

    Article  CAS  Google Scholar 

  • Paull JG, Chalmers KJ, Karakousis A, Kretschmer JM, Manning S, Langridge P (1998) Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theor Appl Genet 96:435–446

    Article  CAS  Google Scholar 

  • Paull JG, Pallotta MA, Langridge P, The TT (1995) RFLP markers associated with Sr22 and recombination between chromosome 7A of bread wheat and the diploid species Triticum boeoticum. Theor Appl Genet 89:1039–1045

    Google Scholar 

  • Penner GA, Clarke J, Bezte LJ, Leisle D (1995) Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat. Genome 38:543–547

    CAS  PubMed  Google Scholar 

  • Perretant MR, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S (2000) QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet 100:1167–1175

    Article  CAS  Google Scholar 

  • Pestsova EG, Ganal MW, Röder MS (2000a) Isolation and mapping of microsatellite markers specific for the D-genome of bread wheat. Genome 43:689–697

    Article  PubMed  CAS  Google Scholar 

  • Pestsova EG, Korzun V, Goncharov NP, Hammer K, Ganal MW, Röder MS (2000b) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106

    Article  CAS  Google Scholar 

  • Pestsova EG, Börner A, Röder MS (2001) Development of a set of Triticum aestivum–Aegilops tauschii introgression lines. Hereditas 135:139–143

    Article  PubMed  CAS  Google Scholar 

  • Pestsova EG, Röder MS (2002) Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal inheritance in pedigrees of breeding programmes. Theor Appl Genet 106:84–91

    PubMed  CAS  Google Scholar 

  • Pestsova EG, Börner A, Röder MS (2006) Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines. Theor Appl Genet 112:634–647

    Article  PubMed  Google Scholar 

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    Article  CAS  Google Scholar 

  • Plaschke J, Börner A, Wendehake K, Ganal MW, Röder MS (1996) The use of wheat aneuploids for the chromosomal assignment of microsatellite loci. Euphytica 89:33–40

    Article  CAS  Google Scholar 

  • Prasad M, Varshney RK, Kumar A, Balyan HS, Sharma PC, Edwards KJ, Singh H, Dhaliwal HS, Roy JK, Gupta PK (1999) A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theor Appl Genet 99:341–345

    Article  Google Scholar 

  • Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592

    CAS  Google Scholar 

  • Prasad M, Kumar N, Kulwal P, Röder MS, Balyan H, Dhaliwal H, Gupta P (2003) QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet 106:659–667

    PubMed  CAS  Google Scholar 

  • Prins R, Groenewald JZ, Marais GF, Snape JW, Koebner RMD (2001) AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor Appl Genet 103:618–624

    Article  CAS  Google Scholar 

  • Procunier JD, Townley-Smith TF, Prashar S, Gray MA, Kim WK, Czarnecki E, Dyck PL (1995) PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat (Triticum aestivum L.). J Genet Breed 49:87–92

    CAS  Google Scholar 

  • Qi L, Cao M, Chen P, Li W, Liu D (1996) Identification, mapping and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome 39:191–197

    CAS  PubMed  Google Scholar 

  • Qu L-J, Foote TN, Roberts MA, Money TA, Aragón-Alcaide L, Snape JW, Moore G (1998) A simple PCR-based method for scoring the ph1b deletion in wheat. Theor Appl Genet 96:371–375

    Article  CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M-C, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring x SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  PubMed  CAS  Google Scholar 

  • Queen RA, Gribbon BM, James C, Jack P, Flavell AJ (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Genet Genomics 271:91–97

    Article  PubMed  CAS  Google Scholar 

  • Rakoczy-Trojanowska M, Bolibok H (2004) Characteristics and a comparison of three classes of microsatellite-based markers and their application in plants. Cell Mol Biol Lett 9:221–238

    PubMed  CAS  Google Scholar 

  • Raupp WJ, Sukhwinder-Singh, Brown-Guedira GL, Gill BS (2001) Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theor Appl Genet 102:347–352

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Appels R, Morrison AD, Richards RA, McDonald G, Ellis MH, Spielmeyer W, Bonnett DG (2001) Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.). Aust J Agr Res 52:1221–1234

    Article  CAS  Google Scholar 

  • Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110:859–864

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro-Carvalho C, Guedes-Pinto H, Igrejas G, Stephenson P, Schwarzacher T, Heslop-Harrison JS (2004) High levels of genetic diversity throughout the range of the Portuguese wheat landrace ‘Barbela’. Ann Bot 94:699–705

    Article  PubMed  CAS  Google Scholar 

  • Robert O, Abelard C, Dedryve F (1999) Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat. Mol Breed 5:167–175

    Article  CAS  Google Scholar 

  • Rong JK, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–126

    Article  CAS  Google Scholar 

  • Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108:920–930

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Plaschke J, Konig SU, Börner A, Sorrells ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333

    Article  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998a) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Röder MS, Korzun V, Gill BS, Ganal MW (1998b) The physical mapping of microsatellite markers in wheat. Genome 41:278–283

    Article  Google Scholar 

  • Röder MS, Wendehake K, Korzun V, Bredemeijer G, Laborie D, Bertrand L, Isaac P, Rendell S, Jackson J, Cooke RJ, Vosman B, Ganal MW (2002) Construction and analysis of a microsatellite-based database of European wheat varieties. Theor Appl Genet 106:67–73

    PubMed  Google Scholar 

  • Röder MS, Huang X-Q, Ganal MW (2004) Wheat microsatellites: potential and implications. In: Lörz H, Wenzel G (eds) Molecular marker systems in plant breeding and crop improvement. Biotechnology in agriculture and forestry, vol 55. Springer, Berlin Heidelberg, pp 255–266

    Google Scholar 

  • Schachermayr GM, Siedler H, Gale MD, Winzeler H, Winzeler M, Keller B (1994) Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theor Appl Genet 88:110–115

    Article  CAS  Google Scholar 

  • Schachermayr GM, Messmer MM, Feuillet C, Winzeler H, Winzeler M, Keller B (1995) Identification of molecular markers linked to the Agropyron-elongatum-derived leaf rust resistance gene Lr24 in wheat. Theor Appl Genet 90:982–990

    Article  CAS  Google Scholar 

  • Schachermayr GM, Feuillet C, Keller B (1997) Molecular markers for the detection of the wheat leaf rust resistance gene Lr10 in diverse genetic backgrounds. Mol Breed 3:65–74

    Article  CAS  Google Scholar 

  • Schmolke M, Zimmermann G, Buerstmayr H, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, Hartl L (2005) Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theor Appl Genet 111:747–756

    Article  PubMed  CAS  Google Scholar 

  • Schnurbusch T, Paillard S, Fossati D, Messmer M, Schachermayr G, Winzeler M, Keller B (2003) Detection of QTLs for Staganospora glume blotch resistance in Swiss winter wheat. Theor Appl Genet 107:1226–1234

    Article  PubMed  CAS  Google Scholar 

  • Schnurbusch T, Paillard S, Schori A, Messmer M, Schachermayr G, Winzeler M, Keller B (2004) Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region. Theor Appl Genet 108:477–484

    Article  PubMed  CAS  Google Scholar 

  • Schulman AH, Gupta PK, Varshney RK (2004) Organization of retrotransposons and microsatellites in cereal genomes. In: Gupta PK, Varshney RK (eds) Cereal genomics, Kluwer Academic Publishers, pp 83–118

  • Seyfarth R, Feuillet C, Schachermayr G, Winzeler M, Keller B (1999) Development of a molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat. Theor Appl Genet 99: 554–560

    Article  CAS  Google Scholar 

  • Sharma H, Ohm H, Goulart L, Lister R, Appels R, Benlhabib O (1995) Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat. Genome 38:406–413

    CAS  PubMed  Google Scholar 

  • Sharp PJ, Johnston S, Brown G, McIntosh RA, Pallotta M, Carter M, Bariana HS, Khatkar S, Lagudah ES, Singh RP, Khairallah M, Potter R, Jones MGK (2001) Validation of molecular markers for wheat breeding. Aust J Agric Res 52:1357–1366

    Article  CAS  Google Scholar 

  • Shi AN, Leath S, Murphy JP (1998) A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 88:144–147

    Article  CAS  PubMed  Google Scholar 

  • Siedler H, Messmer MM, Schachermayr GM, Winzeler H, Winzeler M, Keller B (1994) Genetic diversity in European wheat and spelt breeding material based on RFLP data. Theor Appl Genet 88:994–1003

    Article  Google Scholar 

  • Simón MR, Ayala FM, Cordo CA, Röder MS, Börner A (2004) Molecular mapping of quantitative trait loci determining resistance to septoria tritici blotch caused by Mycosphaerella graminicola in wheat. Euphytica 138:41–48

    Article  Google Scholar 

  • Simón MR, Ayala FM, Cordo CA, Röder MS, Börner A (2007) The exploitation of wheat/goatgrass introgression lines for the detection of gene(s) determining resistance to septoria tritici blotch (Mycosphaerella graminicola). Euphytica (online first). DOI 10.1007/s1068100692932

  • Singh RP, William HM, Huerta-Espino J, Crosby M (2003) Identification and mapping of gene Yr31 for resistance to stripe rust in Triticum aestivum cultivar Pastor. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proceedings of the 10th International Wheat Genetics Symposium, Istituto Sperimentale per la Cerealicoltura, Rome, Italy, vol 1, pp 411–413

  • Singrün Ch, Hsam SLK, Hartl L, Zeller FJ, Mohler V (2003) Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell.). Theor Appl Genet 106:1420–1424

    PubMed  Google Scholar 

  • Smale M, Reynolds MP, Warburton M, Skovmand B, Trethowan R, Singh RP, Ortiz-Monasterio I, Crossa J (2002) Dimensions of diversity in modern spring bread wheat in developing countries from 1965. Crop Sci 42:1766–1779

    Article  Google Scholar 

  • Smith P, Koebner R, Boyd L (2002) The development of a STS marker linked to a yellow rust resistance derived from the wheat cultivar Moro. Theor Appl Genet 104:1278–1282

    Article  PubMed  CAS  Google Scholar 

  • Snape JW, Sarma R, Quarrie SA, Fish L, Galiba G, Sutka J (2001) Mapping genes for flowering time and frost tolerance in cereals using precise genetic stocks. Euphytica 120:309–315

    Article  CAS  Google Scholar 

  • Snape JW, Worland AJ, Sayers EJ (2006) Genetic analysis of orange blossom midge resistance in wheat using chromosome substitution lines and isogfenic lines. In: Börner A, Pankova K, Snape JW (eds) EWAC Newsletter 2006, Proceedings of the 13th International EWAC Conference, Prague, Czech Republic, pp 71–74

  • Somers DJ, Kirkpatrick R, Moniwa M, Walsh A (2003) Mining single nucleotide polymorphisms from hexaploid wheat ESTs. Genome 49:431–437

    Article  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Bill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Perretant MR, Charmet G, Leroy P, Gautier MF, Joudrier P, Nelson JC, Sorrells ME, Bernard M (1996) Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet 93:580–586

    CAS  Google Scholar 

  • Sourdille P, Tixier MH, Charmet G, Gay G, Cadalen T, Bernard S, Bernard M (2000a) Location of genes involved in ear compactness in wheat (Triticum aestivum) by means of molecular markers. Mol Breed 6:247–255

    Article  CAS  Google Scholar 

  • Sourdille P, Snape JW, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M (2000b) Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 43:487–494

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Gay G, Gill B, Bernard M (2002) Molecular and physical mapping of genes affecting awning in wheat. Plant Breed 121:320–324

    Article  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape J, Perretant M, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot x Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Stachel M, Lelley T, Grausgruber H, Vollmann J (2000) Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor Appl Genet 100:242–248

    Article  Google Scholar 

  • Stehno Z, Dotlačil L, Faberová I, Martynov S, Dobrotvorskaya T (2003) Genealogical analysis of the genetic diversity in winter wheat cultivars grown in the former Czechoslovakia and the present Czech Republic during 1919–2001. Czech J Genet Plant Breed 39:99–108

    Google Scholar 

  • Steiner B, Lemmens M, Griesser M, Scholz U, Schondelmaier J, Buerstmayr H (2004) Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana. Theor Appl Genet 109:215–224

    Article  PubMed  CAS  Google Scholar 

  • Stephenson P, Bryan G, Kirby J, Collins A, Devos K, Busso C, Gale M (1998) Fifty new microsatellite loci for the wheat genetic map. Theor Appl Genet 97:946–949

    Article  CAS  Google Scholar 

  • Stoutjesdijk P, Kammholz SJ, Kleven S, Matsay S, Banks PM, Larkin PJ (2001) PCR-based molecular marker for the Bdv2 Thinopyrum intermedium source of barley yellow dwarf virus resistance in wheat. Aust J Agric Res 52:1383–1388

    Article  CAS  Google Scholar 

  • Sukhwinder-Singh, Brown-Guedira G, Grewal T, Dhaliwal H, Nelson J, Singh H, Gill B (2003) Mapping of a resistance gene effective against Karnal bunt pathogen of wheat. Theor Appl Genet 106:287–292

    PubMed  CAS  Google Scholar 

  • Sun GL, Fahima T, Korol AB, Turpeinen T, Grama A, Ronin YI, Nevo E (1997) Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 95:622–628

    Article  CAS  Google Scholar 

  • Sun Q, Wei Y, Ni Z, Xie C, Yang T (2002) Microsatellite marker for yellow rust resistance gene Yr5 in wheat introgressed from spelt wheat. Plant Breed 121:539–541

    Article  CAS  Google Scholar 

  • Thomas J, Riedel E, Penner G (2001) An efficient method for assigning traits to chromosomes. Euphytica 119:217–221

    Article  CAS  Google Scholar 

  • Tóth B, Galiba G, Fehér E, Sutka J, Snape JW (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107:509–514

    Article  PubMed  CAS  Google Scholar 

  • Tucker DM, Griffey CA, Liu S, Saghai Maroof MA (2006) Potential for effective marker-assisted selection of three quantitative trait loci conferring adult plant resistance to powdery mildew in elite wheat breeding populations. Plant Breed 125:430–436

    Article  CAS  Google Scholar 

  • Turner AS, Bradburne RP, Fish L, Snape JW (2004) New quantitative trait loci influencing grain texture and protein content in bread wheat. J Cereal Sci 40: 51–60

    Article  CAS  Google Scholar 

  • Tyrka M, Błaszczyk L, Chelkowski J, Lind V, Kramer I, Weilepp M, Wiśniewska H, Ordon F (2004) Development of the single nucleotide polymorphism marker of the wheat Lr1 leaf rust resistance gene. Cell Mol Biol Lett 9: 879–889

    PubMed  CAS  Google Scholar 

  • Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorák J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995) Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59

    PubMed  CAS  Google Scholar 

  • Varshney R, Prasad M, Roy JK, Kumar N, Harjit-Singh, Dhaliwal HS, Balyan HS, Gupta PK (2000) Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTL for grain weight in bread wheat. Theor Appl Genet 100:1290–1294

    Article  CAS  Google Scholar 

  • Varshney R, Korzun V, Börner A (2004) Molecular maps in cereals: methodology and progress. In: Gupta PK, Varshney RK (eds) Cereal Genomics, Kluwer Academic Publishers, pp 35–82

  • Varshney R, Graner A, Sorrells ME (2005a) Genic microsatellite markers in plants: features and applications. Trends in Biotechnology 23:48–55

    Article  PubMed  CAS  Google Scholar 

  • Varshney R, Sigmund R, Börner A, Korzun V, Stein N, Sorrels ME, Langridge P, Graner A (2005b) Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Science 168:195–202

    Article  CAS  Google Scholar 

  • Verma V, Worland AJ, Sayers EJ, Fish L, Caligari PDS, Snape JW (2005) Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breed 124:234–241

    Article  CAS  Google Scholar 

  • Vosman B, Cooke RJ, Ganal M, Peeters R, Isaac P, Bredemeijer G (2001) Standardization and application of microsatellite markers for variety identification in tomato and wheat. Acta Hort 546:307–316

    CAS  Google Scholar 

  • Weng Y, Li W, Devkota RN, Rudd JC (2005) Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat. Theor Apll Genet 110:462–469

    Article  CAS  Google Scholar 

  • Wilde F, Korzun V, Ebmeyer E, Geiger HH, Miedaner T (2007) Comparison of phenotypic and marker-based selection for Fusarium head blight resistance and DON content in spring wheat. Mol Breed 19:357–370

    Article  CAS  Google Scholar 

  • William M, Singh RP, Huerta-Espino J, Ortiz Islas S, Hoisington D (2003) Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93:153–159

    Article  CAS  PubMed  Google Scholar 

  • Williams KJ, Fisher JM, Langridge P (1994) Identification of RFLP markers linked to the cereal cyst nematode resistance gene (Cre) in wheat. Theor Appl Genet 89:927–930

    Article  CAS  Google Scholar 

  • Williams KJ, Fisher JM, Langridge P (1996) Development of a PCR-based allele-specific assay from an RFLP probe linked to resistance to cereal cyst nematode in wheat. Genome 39:798–801

    Article  PubMed  CAS  Google Scholar 

  • Williams KJ, Lewis JG, Bogacki P, Pallotta M, Willsmore KL, Kuchel H, Wallwork H (2003) Mapping of a QTL contributing to cereal cyst nematode tolerance and resistance in wheat. Aust J Agric Res 54:731–737

    Article  CAS  Google Scholar 

  • Williams KJ, Willsmore KL, Olson S, Matic M, Kuchel H (2006) Mapping of a novel QTL for resistance to cereal cyst nematode in wheat. Theor Appl Genet 112:1480–1486

    Article  PubMed  CAS  Google Scholar 

  • Worland A, Korzun V, Röder M, Ganal M (1998) Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet 96:1110–1120

    Article  CAS  Google Scholar 

  • Xu X-Y, Bai G-H, Carver BF, Shaner GE, Hunger RM (2005a) Mapping of QTLs prolonging the latent period of Puccinia triticina infection in wheat. Theor Appl Genet 110:244–251

    Article  PubMed  Google Scholar 

  • Xu X-Y, Bai G-H, Carver BF, Shaner GE (2005b) A QTL for early heading in wheat cultivar Suwon 92. Euphytica 146:233–237

    Article  CAS  Google Scholar 

  • Yanagisawa T, Kiribuchi-Otobe C, Hirano H, Suzuki Y, Fujita M (2003) Detection of single nucleotide polymorphism (SNP) controlling the waxy character in wheat by using a derived cleaved amplified polymorphic sequence (dCAPS) marker. Theor Appl Genet 107:84–88

    PubMed  CAS  Google Scholar 

  • Yang J, Bai G, Shaner GE (2005) Novel quantitative trait loci (QTL) for Fusarium head blight resistance in wheat cultivar Chokwang. Theor Appl Genet 111:1571–1579

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Carter M, Matsay S, Stoutjesdijk P, Potter R, Jones MGK, Kleven S, Wilson RE, Larkin PJ, Turner M, Gale KR (2001) Implementation of probes for tracing chromosome segments conferring barley yellow dwarf virus resistance. Aust J Agric Res 52:1389–1392

    Article  CAS  Google Scholar 

  • Zhang W, Gianibelli MC, Ma W, Rampling L, Gale KR (2003a) Identification of SNPs and development of allele-specific PCR markers for γ-gliadin alleles in Triticum aestivum. Theor Appl Genet 107:130–138

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Sourdille P, Bernard M, Madéore A, Bernard B (2003b) QTL mapping for anther culturability in wheat using a double-haploid population. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proceedings of the 10th International Wheat Genetics Symposium, Istituto Sperimentale per la Cerealicoltura, Rome, Italy, vol 3, pp 1078–1080

  • Zhao XL, Xia XC, He ZH, Lei ZS, Appels R, Yang Y, Sun QX, Ma W (2006) Novel DNA variations to characterize low molecular weight glutenin Glu-D3 genes and develop STS markers in common wheat. Theor Appl Genet (online first). DOI 10.1007/s0012200604455

  • Zhou LL, Bai G-H, Ma H-X, Carver BF (2007) Quantitative trait loci for aluminum resistance in wheat. Mol Breed 19:153–161

    Article  CAS  Google Scholar 

  • Zhou W-C, Kolb FL, Bai G-H, Shaner G, Domier LL (2002) Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers. Genome 45:719–727

    Article  PubMed  CAS  Google Scholar 

  • Zhou W-C, Kolb FL, Bai G-H, Domier LL, Boze LK, Smith NJ (2003) Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheat. Plant Breed 122:40–46

    Article  CAS  Google Scholar 

  • Zhu LC, Smith CM, Fritz A, Boyko E, Voothuluru P, Gill BS (2005) Inheritance and molecular mapping of new greenbug resistance genes in wheat germplasm derived from Aegilops tauschii. Theor Appl Genet 111:831–837

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The first author thanks the Bulgarian National Science Fund (contract B-1538/05) for the financial support to collect the scientific information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Landjeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landjeva, S., Korzun, V. & Börner, A. Molecular markers: actual and potential contributions to wheat genome characterization and breeding. Euphytica 156, 271–296 (2007). https://doi.org/10.1007/s10681-007-9371-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-007-9371-0

Keywords

Navigation