Skip to main content
Log in

The use of wild relatives in crop improvement: a survey of developments over the last 20 years

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The use of crop wild relatives (CWR) genes to improve crop performance is well established with important examples dating back more than 60 years. In this paper, we review available information on the presence of genes from CWR in released cultivars of 16 mandate crops of the CGIAR institutes, and some selected additional crops, focusing on the past 20 years—the period since a comprehensive review by Robert and Christine Prescott-Allen in 1986. It appears that there has been a steady increase in the rate of release of cultivars containing genes from CWR. While there continues to be a strong emphasis on using pest and disease resistance genes, a wider range of characteristics are being introduced than in the past. Those crops whose wild relatives have traditionally been used as sources of useful traits (e.g., wheat, tomato) continue to be most likely to include new genes from their wild relatives. CWR are continually gaining in importance and prevalence, but, we argue, their contributions to the development of new cultivars remain less than might have been expected given improved procedures for intercrossing species from different gene pools, advances in molecular methods for managing backcrossing programes, increased numbers of wild species accessions in gene banks, and the substantial literature on beneficial traits associated with wild relatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akano A, Dixon A, Mba C, Barrera E, Fregene M (2002) Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theor Appl Genet 105:521–525

    Article  PubMed  CAS  Google Scholar 

  • Appels R, Laguda E (1990) Manipulation of chromosomal segments from wild wheat for the improvement of bread wheat. Aust J Plant Physiol 17:253–266

    Article  Google Scholar 

  • Barclay A (2004) Feral play: Crop scientists use wide crosses to breed into cultivated rice varieties the hardiness of their wild kin, Rice Today, January 2004, pp 14–19

  • Bayuelo-Jimenez JS, Debouck DG, Lynch JP (2002) Salinity tolerance in Phaseolus species during early vegetative growth. Crop Sci 42:2184–2192

    Article  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Eshed Z, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S (1998) Advanced backcross QTL analysis in tomato I Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Brar D (2005) Broadening the genepool and exploiting heterosis in cultivated rice, In: Rice is life: scientific perspectives for the 21st Century Toriyama K, Heong KL, Hardy B (eds) Proceedings of the World Rice Research Conference, Tokyo and Tsukuba, Japan, 4–7 November 2004

  • Brar D, Kush G (1997) Alien introgression in Rice. Plant Mol Biol 35:35–47

    Article  PubMed  CAS  Google Scholar 

  • CIMMYT (2004) Wild Wheat Relatives Help Boost Genetic Diversity, Mexico City

  • Crute IR (1992) From breeding to cloning (and back again?): a case study with lettuce downy mildew. Annu Rev Phytopathol 30:485–506

    Article  PubMed  CAS  Google Scholar 

  • Eenink AH, Groenwold R, Dieleman FL (1982) Resistance of lettuce (Lactuca) to the leaf aphid Nasonovia ribisnigri 1 Transfer of resistance from L. virosa to L. sativa by interspecific crosses and selection of resistant breeding lines. Euphytica 31:291–300

    Article  Google Scholar 

  • Escalant J, Sharrock S, Frison E (2002) The genetic improvement of Musa using conventional breeding, and modern tools of molecular and cell biology, International Network for the Improvement of Banana and Plantain

  • Fatokun C (2002) Breeding cowpea for resistance to insect pests: attempted crosses between cowpea and Vigna vexillata, Challenges and Opportunities for Enhancing Sustainable Cowpea Production, International Institute of Tropical Agriculture

  • Gallepo G (1988) Novel seed protein in beans kills weevil enemies, Research Division College of Agriculture and Life Sciences, University of Wisconsin, pp 1–3

  • Gepts P (2002) A comparison between crop domestication classical plant breeding and genetic engineering. Crop Sci 42:1780–1790

    Article  Google Scholar 

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Current Sci 80:524–535

    CAS  Google Scholar 

  • Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLOS Biol 2:1610–1615

    Article  CAS  Google Scholar 

  • Hanna WW (1989) Characteristics and stability of a new cytoplasmic-nuclear male sterile source in pearl millet. Crop Sci 29:1457–1459

    Article  Google Scholar 

  • Hanna WW, Hill GM, Gates RN, Wilson JP, Burton GW (1997) Registration of Tifleaf 3 pearl millet. Crop Sci 37:1388

    Article  Google Scholar 

  • Hodgkin T, Hajjar R (2007) Using crop wild relatives for crop improvement: trends and perspectives (in press)

  • Hoisington D, Khairallah M, Reeves T, Ribaut J-M, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: what can they contribute towards increased crop productivity? PNAS 96: 5937–5943

    Article  PubMed  CAS  Google Scholar 

  • Hoyt E (1988) Conserving the Wild Relatives of Crops, Rome, Italy, IPGRI/IUCN/WWF

  • Huang X, Coster H, Ganal M, Roder M (2003) Advanced backross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L). Theor Appl Genet 106:1370–1389

    Google Scholar 

  • IBPGR (1983) IBPGR Advisory Committee on in vitro Storage, Report of the First Meeting, Rome, International Board for Plant Genetic Resources

  • Jordan J, Butler D, Henzell B, Drenth J, McIntyre L (2004) Diversification of Australian sorghum using wild relatives, New Directions for a Diverse Planet: Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 Sep—1 Oct 2004

  • Kelly JD, Kolkman JM, Schneider K (1998) Breeding for yield in dry bean (Phaseolus vulgaris L.). Euphytica 102:343–356

    Article  Google Scholar 

  • Knight J. (2003) A dying breed. Nature 421:568–570

    Article  PubMed  CAS  Google Scholar 

  • Koebner R, Summers R (2002) The impact of molecular markers on the wheat breeding program. Cell Mol Biol Lett 7:695–702

    PubMed  CAS  Google Scholar 

  • Ladizinsky G, Newell C, Hymowitz T (1979) Wide crosses in soybeans: Prospects and limitations. Euphytica 28:421–423

    Article  Google Scholar 

  • Lexer C, Lai Z, Rieseberg LH (2004) Candidate gene polymorphisms associated with salt tolerance in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species. New Phytol 161:225–233

    Article  CAS  PubMed  Google Scholar 

  • Love S (1999) Founding clones, major contributing ancestors, and exotic progenitors of prominent North American potato cultivars. Am J Potato Res 76:263–272

    Google Scholar 

  • Mallikarjuna N (1999) Ovule and embryo culture to obtain hybrids from interspecific incompatible pollinations in chickpea. Euphytica 110:1–6

    Article  Google Scholar 

  • Meilleur BA, Hodgkin T (2004) In situ conservation of crop wild relatives: status and trends. Biodivers Conserv 13:663–684

    Article  Google Scholar 

  • Miller JF, Seiler GJ (2003) Registration of Five Oilseed Maintainer (HA 429–HA 433) Sunflower Germplasm Lines. Crop Sci 43:2313–2314

    Article  Google Scholar 

  • Moncada P, Martínez C, Borrero J, Chatel M, Gauch Jr. H, Guimaraes E, TohmeJ, McCouch S (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52

    Article  CAS  Google Scholar 

  • Mujeeb-Kazi A, Fuentes-Davila G, Villareal R, Cortes A, Roasas V, Delgado R (2001) Registration of 10 synthetic hexaploid wheat and six bread wheat germplasms resistant to karnal bunt. Crop Sci 41:1652–1653

    Article  Google Scholar 

  • Mujeeb-Kazi A, Rosas V, Roldan S (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh (Aegilops squarrosa auct. non. L) in synthetic hexaploid wheats (T. turgidum L. s. lat. x T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evol 43:129–134

    Article  Google Scholar 

  • Nassar NMA (2003) Cassava, Manihot esculenta Crantz genetic resources: VI Anatomy of a diversity center. Genet Mol Res 2:214–222

    PubMed  Google Scholar 

  • National Potato Council (2003) Potato Statistics: Seed Certification, Approved Acreage, Varieties Planted, and Production

  • Nguyen B, Brar D, Bui B, Nguyen T, Pham L, Nguyen H (2003) Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff, into indica rice (Oryza sativa L.). Theor Appl Genet 106:583–593

    PubMed  CAS  Google Scholar 

  • Nweke F (2004) New Challenges in the Cassava Transformation in Nigeria and Ghana, Environment and Production Technology Division Discussion Paper. International Food Policy Research Institute, Washington, DC

  • Plucknett D, Smith N, Williams J, Murthi Anishetty N (1987) Gene Banks and the World’s Food. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Prescott-Allen C, Prescott-Allen R (1986) The First Resource: Wild Species in the North American Economy. Yale University, New Haven

    Google Scholar 

  • Prescott-Allen C, Prescott-Allen R (1988) Genes from the Wild: Using Wild Genetic Resources for Food and Raw materials. International Institute for Environment and Development, London

    Google Scholar 

  • Price HJ, Hodnett GL, Burson BL, Dillon SL, Rooney WL (2005) A Sorghum bicolor x S. macrospermum hybrid recovered by embryo rescue and culture. Aust J Botany 53:579–582

    Article  Google Scholar 

  • Rao N, Reddy L, Bramel P (2003) Potential of wild species for genetic enhancement of some semi-arid food crops. Genet Resour Crop Evol 50:707–721

    Article  Google Scholar 

  • Rick C, Chetelat R (1995) Utilization of related wild species for tomato improvement, First International Symposium on Solanacea for Fresh Market. Acta Hortic 412:21–38

    Google Scholar 

  • Riggs RD, Wang S, Singh RJ, Hymowitz T (1998) Possible transfer of resistance to Heterodora glycine from Glycine tomentella to Glycine max. J Nematol 30:547–552

    PubMed  CAS  Google Scholar 

  • Ross H (1986) Potato breeding-problems and perspectives, Advances in Plant Breeding 132 pp

  • Saxena KB, Kumar RV (2003) Development of a cytoplasmic male sterility system in pigeonpea using C. scarabaeoides (L.) Thouars. Indian J Genet Pl Br 63:225–229

    Google Scholar 

  • Sebolt A, Shoemaker R, Diers B (2000) Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Cell Biol Mol Genet 40:1438–1444

    CAS  Google Scholar 

  • Seiler G, Gulya T (2004) Exploration for wild Helianthus species in North America: challenges and opportunities in the search for global treasures, 16th International Sunflower Conference, vol 1. Fargo, ND, pp 43–68

  • Shannon MC (1997) Adaptation of Plants. Adv Agron 60:75–120

    Article  Google Scholar 

  • Simpson C, Starr J (2001) Registration of “COAN” peanut. Crop Sci 41:918

    Article  Google Scholar 

  • Singh S (2001) Broadening the genetic base of common bean cultivars. Crop Sci 41:1659–1675

    Article  Google Scholar 

  • Suszkiw J (2005) Hessian Fly-Resistant Wheat Germplasm Available Agricultural Research Service, News and Events, United States Department of Agriculture

  • Tanksley S, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  Google Scholar 

  • Tanksley S, McCouch S (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Villareal R, Sayre K, Banuelos O, Mujeeb-Kazi A (2001) Registration of four synthetic hexaploid wheat (Triticum turgidum/Aegilops tauschii) germplasm lines tolerant ot waterlogging. Crop Sci 41:274

    Article  Google Scholar 

  • Virmani S, Shinjyo C (1988) Current status of analysis and symbols for male sterile cytoplasms and fertility restoring genes. Rice Genet Newsl 5:9–15

    Google Scholar 

  • Vuylsteke DR, Swennen RL, Ortiz R (1993) Development and performance of black sigatoka-resistant tetraploid hybrids of plantain (Musa spp., AAB group). Euphytica 65:33–42

    Article  Google Scholar 

  • Wayne Smith C, Fredericksen R (eds) (2000) Sorghum: Origin, History, Technology and Production. John Wiley and Sons, 824 pp

  • Wilson JP, Gates RN (1993) Forage yield losses in hybrid pearl millet due to leaf blight caused primarily by Pyricularia grisea. Phytopathology 83:739–743

    Article  Google Scholar 

  • Wilson JP, Gates RN, Hanna WW (1991) Effect of rust on yield and digestibility of pearl millet forage. Phytopathology 81:233–236

    Google Scholar 

  • Wilson JP, Hess DE, Hanna WW (2000) Resistance to Striga hermonthica in wild accessions of the primary gene pool of Pennisetum glaucum. Phytopathology 90:1169–1172

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Grandillo S, Sang N, McCouch S, Tanksley S (1996) Genes from wild rice improve yield. Nature 384:223–224

    Article  CAS  Google Scholar 

  • Xiao J, Lia J, Grandilloa S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of Trait-Improving Quantitative Trait Loci Alleles From a Wild Rice Relative, Oryza rufipogon. Genetics 150:899–909

    PubMed  CAS  Google Scholar 

  • Zhong G-Y (2001) Genetic issues and pitfalls in transgenic plant breeding. Euphytica 118:137–144

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank UNEP/GEF for financial support for this study which was undertaken as a contribution to the international GEF supported project “In-situ Conservation of Crop Wild Relatives through Enhanced Information Management and Field Application”. We would also like to thank Dr Annie Lane,for her advice and constant encouragement, and the many plant breeders and experts who took the time to respond to our survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reem Hajjar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajjar, R., Hodgkin, T. The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156, 1–13 (2007). https://doi.org/10.1007/s10681-007-9363-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-007-9363-0

Keywords

Navigation