Advertisement

Euphytica

, Volume 154, Issue 1–2, pp 41–51 | Cite as

Doubled-haploid versus single-seed descent and S1-family variation for testcross performance in a maize population

  • J. BordesEmail author
  • G. Charmet
  • R. Dumas de Vaulx
  • A. Lapierre
  • M. Pollacsek
  • M. Beckert
  • A. Gallais
Article

Abstract

Progress made in the in situ gynogenesis technique since 1990 now allows production of a high number of maize (Zea mays L.) doubled-haploid (DH) lines. The aim of the study was to compare DH lines versus selfing lines for testcross performance. DH and single-seed descent (SSD) lines were produced from random S1 progenies of a broad-base population. For grain yield, kernel moisture, plant height, ear height and leaf length, the three population means were similar. Except for kernel moisture, the genetic variance of DH lines was nearly twice as high as the genetic variance of S1 families, as expected. On the other hand, genetic variance among SSD lines was only 1.5 times higher than the genetic variance of S1 families. This lower variance could be due to a selection bias in the method of production of SSD lines. However, for all traits, heritability of SSD or DH lines was higher than heritability of S1 families. Epistasis effects in DH progenies were not significant. The consequence was a high correlation between S1 testcross progenies and DH or SSD testcross progenies, meaning that the S1 testcross value can be used to select the best families from which DH lines will be extracted. As a whole, the observed variation in DH lines appeared to be more in accordance with the observed variation among S1 families than with the observed variation among SSD lines.

Keywords

Gynogenesis Doubled-haploid lines Single-seed descent lines S1-families Maize 

Notes

Acknowledgements

We are grateful to Daniel Saint André and Bernard Coudert for their technical assistance and Josiane Bonnemoy for his documentation assistance. This work was supported by INRA and the Promaïs association members involved in this research: Caussade Semences, Euralis Génétique, Maïsadour Semences, Limagrain Genetics, R2N-RAGT Semences, Verneuil Recherche.

References

  1. Beckert M (1994) Advantages and disadvantages of the use of in vitro / in situ produced DH maize plants. In: Bajaj Y (ed) Biotechnology in agriculture and forestry, Maize 25. Springer-Verlag, Berlin, pp 201–213Google Scholar
  2. Björnstad A, Skinnes H, Uhlen A, Marum P, Maröy A (1993) Genetic marker segregations in doubled haploids in spring wheat crosses. Hereditas 118:55–62CrossRefGoogle Scholar
  3. Bordes J, Dumas de Vaulx R, Lapierre A, Pollacsek M (1997) Haplodiploidization of maize (Zea mays L.) through induced gynogenesis assisted by glossy markers and its use in breeding. Agronomie 17:291–297Google Scholar
  4. Bordes J, Charmet G, Dumas de Vaulx R, Pollacsek M, Beckert M, Gallais A (2006) Doubled-haploid versus S1-family recurrent selection for testcross performance in a maize population. Theor Appl Genet 112:1063–1072PubMedCrossRefGoogle Scholar
  5. Bouchez A, Gallais A (2000) Efficiency of the use of doubled-haploids in recurrent selection for combining ability. Crop Sci 40:23–29CrossRefGoogle Scholar
  6. Chalyk S (1994) Properties of maternal haploid maize plants and potential application to maize breeding. Euphytica 79:13–18CrossRefGoogle Scholar
  7. Charmet G, Branlard G (1985) A comparison of androgenetic doubled haploid and single seed descent lines in Triticale. Theor Appl Genet 71:193–200Google Scholar
  8. Chase SS (1949) The reproductive success of monoploid maize. Amer J Bot 36:795–796Google Scholar
  9. Chase SS (1974) Utilisation of haploids in plant breeding: breeding diploid species. Proceedings of the first international symposium on haploids, University of Guelph, pp 211–230Google Scholar
  10. Coe E (1959) Mutation of CI-a line with 2–3% haploids. Maize Genet Coop News lett 30:96–99Google Scholar
  11. Deimling S, Röber F, Geiger HH (1997) Methodik und genetik der in-vivo- haploideninduktion bei Mais. Vortrage für Pflanzenzüchtung 38:203–204Google Scholar
  12. Gallais A (1978) Amélioration des populations, méthodes de sélection et création de variétés. II. Le concept de la valeur variétale et ses conséquences pour la sélection récurrente. Annales de l’Amélioration des Plantes 28:269–287Google Scholar
  13. Gallais A (1979a) Le concept de valeur en lignées et son utilisation possible en sélection. Annales de l’Amélioration des Plantes 29:1–22Google Scholar
  14. Gallais A (1979b) The concept of varietal ability in breeding. Euphytica 28:811–823CrossRefGoogle Scholar
  15. Gallais A (1989a) Optimization of recurrent selection on the phenotypic value of doubled haploid lines. Theor Appl Genet 77:501–504CrossRefGoogle Scholar
  16. Gallais A (1989b) Théorie de la sélection en amélioration des plantes. Ed. Masson, ParisGoogle Scholar
  17. Gallais A (1990a) Application of the concepts of the test value and of varietal value to the study of genetic advance in recurrent selection. Euphytica 48:197–209CrossRefGoogle Scholar
  18. Gallais A (1990b) Quantitative genetics of doubled haploid populations and application to the theory of line development. Genetics 124:199–206Google Scholar
  19. Gallais A (1991) A general approach for the study of a population of test-cross progenies and consequences for the recurrent selection. Theor Appl Genet 81:493–503CrossRefGoogle Scholar
  20. Gallais A (1993) Efficiency of recurrent selection methods to improve the line value of a population. Plant Breed 111:31–41CrossRefGoogle Scholar
  21. Goldringer I, Brabant P, Gallais A (1996) Theoretical comparison of recurrent selection methods for the improvement of self-pollinated crops. Crop Sci 36:1171–1180CrossRefGoogle Scholar
  22. Griffing B (1975) Efficiency changes due to use of doubled-haploids in recurrent selection methods. Theor Appl Genet 46:367–386Google Scholar
  23. Hallauer A, Miranda J (1981) Quantitative genetics in maize breeding. Iowa State University Press, USAGoogle Scholar
  24. Hinze L, Lamkey K (2003) Absence of epistasis for grain yield in elite maize hybrids. Crop Sci 43:46–56CrossRefGoogle Scholar
  25. Kermicle JL (1969) Androgenesis conditioned by a mutation in maize. Science 166:1422–1424CrossRefPubMedGoogle Scholar
  26. Knapp S, Stroup W, Ross W (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194CrossRefGoogle Scholar
  27. Lamkey K, Schnicker B, Melchinger A (1995) Epistasis in an elite maize hybrid and choice of generation for inbred line development. Crop Sci 35:1272–1281CrossRefGoogle Scholar
  28. Lashermes P, Beckert M (1988) A genetic control of maternal haploidy in maize (Zea mays L.) and selection of haploid inducing lines. Theor Appl Genet 76:405–410Google Scholar
  29. Lashermes P, Gaillard A, Beckert M (1988) Haploidy plants analysis for agronomic and enzymatic markers in maize (Zea mays L.). Theor Appl Genet 76:570–572Google Scholar
  30. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Inc. Pub., Sunderland, Massachusetts, USAGoogle Scholar
  31. Ma H, Busch R, Riera-Lizarazu O, Rines H (1999) Agronomic performance of lines derived from anther culture, maize pollination and single-seed descent in a spring wheat cross. Theor Appl Genet 99:432–436CrossRefGoogle Scholar
  32. Marhic A, Antoine-Michard S, Bordes J, Pollacsek M, Murigneux A, Beckert M (1998) Genetic improvement of anther culture response in maize: relationship with molecular, Mendelian and agronomic traits. Theor Appl Genet 97:520–525CrossRefGoogle Scholar
  33. Melchinger AE (1987) Expectation of means and variances of testcrosses produced from F2 and backcross individuals and their selfed progenies. Heredity 59:105–115Google Scholar
  34. Murigneux A, Barloy D, Leroy P, Beckert M (1993) Molecular and morphological evaluation of doubled haploid lines in maize. Theor Appl Genet 86:837–842CrossRefGoogle Scholar
  35. SAS Institute Inc. (2000) SAS/STAT user’s guide, Version 8. SAS Institute, Cary NC, USAGoogle Scholar
  36. Scheffe H (1959) The analysis of variance. Wiley, New-York, USAGoogle Scholar
  37. Seitz G (2005) The use of doubled haploids in corn breeding. 41st Annual Illinois Corn Breeders’School. Univ. Illinois Urbana-Champaign. http://imbgl.cropsci.uiuc.edu/index.html
  38. Thomson DL (1954) Combining ability of homozygous diploids of corn relative to lines derived by inbreeding. Agron J 46:133–136CrossRefGoogle Scholar
  39. Wolf D, Hallauer A (1997) Triple testcross analysis to detect epistasis in maize. Crop Sci 37:763–770CrossRefGoogle Scholar
  40. Wolf D, Peternelli L, Hallauer A (2000) Estimates of genetic variance in an F2 maize population. J Heredity 91:384–391CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • J. Bordes
    • 1
    Email author
  • G. Charmet
    • 1
  • R. Dumas de Vaulx
    • 1
  • A. Lapierre
    • 1
  • M. Pollacsek
    • 1
  • M. Beckert
    • 1
  • A. Gallais
    • 2
  1. 1.UMR Amélioration et Santé des PlantesClermont-FerrandFrance
  2. 2.INRA-UPS-INAPG-CNRSGif sur YvetteFrance

Personalised recommendations