Skip to main content
Log in

Androgenesis as a means of dissecting complex genetic and physiological controls: selecting useful gene combinations for breeding freezing tolerant grasses

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The advantages of androgenesis from Lolium × Festuca hybrids as a means towards enhanced gene expression and capture of rare genetic variation are reviewed. New evidence is presented for the technique’s use in combination with introgression-mapping for targeting Festuca-derived genes for enhanced freezing-tolerance. As a starting point, a dihaploid genotype derived by androgenesis from a Lolium multiflorum × Festuca pratensis amphiploid (2n = 4x = 28) hybrid cultivar is used as female parent in a backcross breeding programme with L. multiflorum (2n = 2x = 14). A derivative of the backcross␣breeding programme was a genotype of L.␣multiflorum (2n = 2x = 14) incorporating a F.␣pratensis introgression on chromosome 4 that was more freezing-tolerant than Lolium.

New evidence of the importance in Lolium and Festuca species of the adaptive capabilities of Photosystem II (PSII) in relation to subsequent freezing-tolerance, is presented. Non-photochemical quenching (NPQ) mechanisms for expulsion of excess light energy during cold acclimation are found in F. pratensis but not in L. multiflorum. Screens of a backcross population derived from an initial dihaploid genotype (n + n = 14) produced by androgenesis from a L. multiflorum × F.␣pratensis amphiploid, indicate a direct relationship between cold acclimation induced increases in NPQ and freezing-tolerance. Preliminary evidence of a role for genes found on chromosome 4 of F. pratensis for increased NPQ expression, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

F 0, F 0′:

Fluorescence of dark and light adapted leaves, respectively when all PSII reaction centres are open

F v :

Variable fluorescence (F v = F m − F 0)

F m , F m′:

Fluorescence when all PSII reaction centres are closed in dark and light-exposed leaves, respectively

F s :

Steady state fluorescence in light exposed leaves

F v/F m :

Maximum quantum yield of Photosystem II (PSII)

PPFD:

Photosynthetic photon flux density

NPQ:

Non-photochemical quenching of chlorophyll a fluorescence

q p :

Photochemical quenching of chlorophyll a fluorescence

References

  • Ahmad M (1999) Seeing the world in red and blue: insight into plant vision and photoreceptors. Curr Opin Plant Biol 2:230–235

    Article  PubMed  CAS  Google Scholar 

  • Alm V, Busso CS, Larsen A, Humphreys MW, Rognli OA (2005) Quantitative trait loci for frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.), and comparative mapping with cereals. Genetics (in press)

  • Bilger W, Bjorkman O (1991) Temperature-dependence of violaxanthin deepoxidation and nonphotochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parvoflora L. Planta 184:226–234

    CAS  Google Scholar 

  • Fuller MP, Eagles CF (1978) A seedling test for cold-hardiness in Lolium perenne L. J Agri Sci 91:217–222

    Article  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Bio Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Ann Rev Plant Physiol Plant Mol Biol 41:187–223

    CAS  Google Scholar 

  • Humphreys J, Harper JA, Armstead IP, Humphreys MW (2005) Introgression-mapping of genes for drought resistance transferred from Festuca arundinacea var. glaucescens into Lolium multiflorum. Theor Appl Genet 110 (3):579–587

    Article  PubMed  CAS  Google Scholar 

  • Humphreys MW, Pašakinskienė I (1996) Chromosome painting to locate genes for drought resistance transferred from Festuca arundinacea into Lolium multiflorum. Heredity 77:530–534

    Google Scholar 

  • Humphreys MW, Thomas HM, Harper JA, Morgan WG, James AR, Zare AG, Thomas H (1997) Dissecting drought- and cold-tolerance traits in the Lolium-Festuca complex by introgression mapping. New Phytol 137:55–60

    Article  Google Scholar 

  • Humphreys MW, Zare AG, Pašakinskienė I, Thomas H, Rogers WJ, Collin HA (1998) Interspecific genomic rearrangements in androgenic plants derived from a Lolium multiflorum× Festuca arundinacea (2n = 5x = 35) hybrid. Heredity 80:78–82

    Article  Google Scholar 

  • Humphreys MW, Zwierzykowski Z, Collin HA, Rogers WJ, Zare A-G, Leśniewska A (2001) Androgenesis in grasses—Methods and aspects for future breeding. In: Proceedings COST 824, Biotechnological Approaches for Utilization of Gametic Cells, Bled, Slovenia, 1–5 July 2000, pp 5–13

  • Humphreys MW, Canter PJ, Thomas HM (2003) Advances in introgression technologies for precision breeding within the Lolium–Festuca complex. Ann Appl Biol 143:1–10

    Article  CAS  Google Scholar 

  • Humphreys MW, Humphreys J, Donnison IS, King IP, Thomas HM, Guesquiére M, Durand J-E, Rognli O-A, Zwierzykowski Z, Rapacz M (2004) Molecular breeding and functional genomics for tolerance to abiotic stress. Deve Plant Breed 11:61–80

    Article  CAS  Google Scholar 

  • Huner NPA, Maxwell DP, Gray GR, Savitch LV, Krol M, Ivanov AG, Falk S (1996) Sensing environmental temperature change through imbalances between energy supply and energy consumption: redox state of␣photosystem II. Physiol Plant 98:358–364

    Article  CAS  Google Scholar 

  • Jensen LB, Andersen JR, Frei U, Xing Y, Taylor C, Holm PB, Lũbberstedt T (2005) QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet 110:527–536

    Article  PubMed  CAS  Google Scholar 

  • King J, Armstead IP, Donnison IS, Thomas HM, Jones RN, Kearsey MJ, Roberts LA, Jones A, King IP (2002) Physical and genetic mapping in the grasses Lolium perenne and Festuca pratensis. Genetics 161:315–324

    PubMed  CAS  Google Scholar 

  • Leśniewska A, Ponitka A, ślusarkiewicz-Jarzina A, Zwierzykowska E, Zwierzykowski Z, James AR, Thomas H, Humphreys MW (2001) Androgenesis from Festuca pratensis × Lolium multiflorum amphidiploid cultivars in order to select and stabilise rare gene combinations for grass breeding. Heredity 86(2):167–176

    Article  PubMed  Google Scholar 

  • Nitsch C (1974) Pollen culture—a new technique for mass production of haploid and homozygous plants. In: Proceedings of the International Symposium on haploids in higher plants, University of Guelph, Canada, pp 123–135

  • Rapacz M (2002) Regulation of frost resistance during cold deacclimation and reacclimation of oilseed rape. A possible role of PSII redox state. Physiol Plant 115:236–243

    Article  PubMed  CAS  Google Scholar 

  • Rapacz M, Gasior D, Zwierzykowski Z, Leśniewska-Bocianowska A, Humphreys MW, Gay AP (2004) Changes in cold tolerance and the mechanisms of acclimation of photosystem II to cold hardening generated by anther culture of Festuca pratensis and Lolium multiflorum cultivars. New Phytologist 162(1):105–114

    Article  CAS  Google Scholar 

  • Rapacz M, Gasior D, Humphreys MW, Zwierzykowski Z, Plazek A, Leśniewska-Bocianowska A, (2005) Variation for winter hardiness generated by androgenesis from Festuca pratensis × Lolium multiflorum amphidiploid cultivars with different winter susceptibility. Euphytica 142:65–73

    Article  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assesment of in vivo photosynthesis. In: Schultze E-D, Caldwell MM (eds), Ecophysiology of photosynthesis. Springer-Verlag, Berlin, Germany, pp 49–70

    Google Scholar 

  • Thomas HM, Morgan WG, Humphreys MW (2003) Designing grasses with a future—combining the attributes of Lolium and Festuca. Euphytica 133:19–26

    Article  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  Google Scholar 

  • Zare AG, Humphreys MW, Rogers WJ, Collin HA (1999) Androgenesis from a Lolium multiflorum × Festuca arundinacea hybrid to generate genotypic variation for freezing-tolerance. Plant Breeding 118:497–501

    Article  Google Scholar 

  • Zare AG, Humphreys MW, Rogers JW, Mortimer AM, Collin HA (2002) Androgenesis in a Lolium multiflorum × Festuca arundinacea hybrid to generate genotypic variation for drought resistance. Euphytica 125:1–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Humphreys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humphreys, M.W., Gasior, D., Lesniewska-Bocianowska, A. et al. Androgenesis as a means of dissecting complex genetic and physiological controls: selecting useful gene combinations for breeding freezing tolerant grasses. Euphytica 158, 337–345 (2007). https://doi.org/10.1007/s10681-006-9240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-9240-2

Keywords

Navigation