Skip to main content
Log in

Assessment for salinity tolerance through intergeneric hybridisation: Triticum durum × Aegilops speltoides

Euphytica Aims and scope Submit manuscript

Summary

Triploid hybrid embryos (AABB × SS = ABS) were produced by crossing two moderately salt-tolerant wheats, namely Triticum turgidum durum and Aegilops speltoides subsp. speltoides. The embryos were rescued by culturing on agar No. 1. Chromosome doubling was achieved by using 0.05% colchicine. The resulting hexaploid plants grew to maturity, and produced a considerable amount of seed (≈40,000). The synthetic hexaploid (C2) was tested for salinity tolerance, grown at 0, 100, 125, 150, 160, 170, 180 and 200 mM NaCl in a standard nutrient solution for 2 weeks. The criterion of salt tolerance was root growth in different NaCl concentrations. The amphidiploid material showed greater salinity tolerance than either parent, suggesting the presence of different genes for tolerance in the parents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Ashraf, M. & T. McNeilly, 1988. Variability in salt tolerance of nine spring wheat cultivars. J Agron Crop Sci 160: 14–21.

    Article  CAS  Google Scholar 

  • Darlington, C.D. & L.F. La Cour, 1962. The handling of chromosomes. George Allen and Unwin Ltd., London.

    Google Scholar 

  • Dvorak, J. & K. Ross, 1986. Expression of tolerance of Na+, K+, Mg2+, Cl, and So4 2+ ions and sea water in the amphiploid of Triticum aestivum × Elytrigia elogata. Crop Sci 26: 658-660.

    Article  CAS  Google Scholar 

  • Epstein, E., J.D. Norlyn, D.W. Rush, R.W. Kingsbury, D.A. Kelley, G.A. Cunningham & A.F. Wrona, 1980. Saline culture of crop: A genetic approach. Science 210: 399–404.

    CAS  PubMed  Google Scholar 

  • Forster, B.P., J. Gorham & T.E. Miller, 1987. Salt tolerance of amphiploid between Triticum aestivum and Agropyron junceum. Plant Breeding 98: 1–8.

    CAS  Google Scholar 

  • Harland, J.R. & J.M.J. De Wet, 1975. The origin of polyploidy. Bot Rev 41: 361–390.

    Google Scholar 

  • Hewitt, E.J., 1966. Sand and water culture methods used in the study of plant nutrition. Commonwealth Agricultural Bureau. Technical Communication No. 22.

  • Jana, S., J.P. Srivastava & P.L. Gautam, 1983. Evaluation of genetic resources of durum wheat for salt stress tolerance. Procceding of the 6th International wheat genetics symposium, Koyoto, Japan, pp. 137–141.

  • Jauhar, P.P., 1991. Hybrid between durum wheat and diploid Thinopyrum bessarabicum. Genome 34: 283–287.

    Google Scholar 

  • King, I.P., K.A. Purdie, S.E. Orford, S.M. Reader & T.E. Miller, 1993. Detection of homoeologous chiasma formation in Triticum durum × Thinopyrum bessarabicum hybrids using genomic in situ hybridisation. Heredity 71: 369–372.

    Google Scholar 

  • Lange, W. & G. Jochemson, 1992. Use of the gene pools of Triticum turgidum ssp. dicoccoides and Aegilops squarrosa for the breeding of common wheat (T. aestivum), through chromosome-doubled hybrids. 1–Two strategies for the production of the amphiploids. Euphytica 59: 197–212.

    Google Scholar 

  • Laurie, D.A. & L.S. O'Donoughue, 1994. Wheat × Maize crosses for the production of wheat haploids. In: Y.P.S. Bajaj (Ed.), Biotechnology in Agriculture and Forestry 25, Maize. Springer Verlag, Berlin.

    Google Scholar 

  • Mahmood, A. & A. Quarrie, 1993. Effects of salinity on growth, ionic relations and physiological traits of wheat, disomic addition lines from Thinopyrum bessarabicum, and two amphiploids. Plant Breeding 110: 265–276.

    CAS  Google Scholar 

  • Munns R., R.A. Hare, R.A. James & G.J. Rebetzke, 2000. Genetic variation for improving the salt tolerance of durum wheat. Aust J Agric Res 51: 69–74.

    Article  CAS  Google Scholar 

  • Pignone, D., 1993. Non-reductional meiosis in a Triticum turgidum × Aegilops longissima hybrid and in backcrosses of its amphidiploid with T. turgidum (Poaceae). Plant System Evol 187: 127-134.

    Article  Google Scholar 

  • Porcedddu, E., C. Ceoloni, D. Lafiandra, O.A. Tanzarella & G.T. Scarascia Mugnozza, 1988. Genetic resources and plant breeding: Problems and prospects. In: T.E. Miller & R.M.D. Koebner (Eds.), Proceeding of the 7th International Wheat Genetics Symposium, Institute of Plant Science Research, Cambridge, pp. 7–21.

  • Sada Noori, S.A. & T. McNeilly, 1999. Assessment of variability in salt tolerance in diploid Aegilops ssp. J Genet Breeding 53: 183–188.

    Google Scholar 

  • Sadat Noori, S.A. & T. McNeilly, 2000. Assessment of variability in salt tolerance based on seedling growth in Triticum durum desf. Genet Resour Crop Evol 47: 285–291.

    Article  Google Scholar 

  • Schachtman, D.P., E.S. Lagudah, & R. Munns, 1992. The expression of salt tolerance from Triticum tauschii in hexaploid wheat. Theor Appl Genet 84: 714–719.

    Article  Google Scholar 

  • Shannon, M.C., 1979. In quest of rapid screening techniques for plant salt tolerance. Hort Sci 14: 587.

    CAS  Google Scholar 

  • Sharma, H.C. & B.S. Gill, 1983. Current status of wide hybridisation in wheat. Euphyotica 32: 17–31.

    Google Scholar 

  • Weltzien, E. 1983. Resistance of durum wheat genotypes to saline-drought field conditions. RACHIS 3: 34–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ahmad Sadat Noori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noori, S.A.S. Assessment for salinity tolerance through intergeneric hybridisation: Triticum durum × Aegilops speltoides . Euphytica 146, 149–155 (2005). https://doi.org/10.1007/s10681-005-8001-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-005-8001-y

Key words

Navigation