Skip to main content

Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses

Summary

Trehalose (a non-reducing disaccharide) plays an important role in abiotic stress protection. It has been shown that using trehalose synthesis genes of bacterial origin, drought and salt tolerance could be achieved in several plants. A cassette harboring the AtTPS1 gene under the control of the CaMV35S promoter and the Bialaphos resistance gene was inserted in the binary plasmid vector pGreen0229 and used for Agrobacterium-mediated transformation of tobacco (Nicotiana tabacum). T0 plants obtained were analyzed by PCR for the presence of AtTPS1 gene. Thirty lines were positive and seeds were germinated on media with 6 mg/l PPT to obtain T1 plants that were grown in the greenhouse to obtain T2 seeds that were germinated on selective media. Lines which seeds showed a 100 % survival rate were considered homozygous transgenic T1 lines. Three lines were selected and gene expression confirmed by northern and western blots. Transgenic seeds were germinated on media with different concentrations of mannitol (0, 0.25, 0.5 and 0.75 M) and sodium chloride (0, 0.07, 0.14, 0.2, 0.27 and 0.34 M) to score their tolerance to osmotic stress. Assays were conducted to test the tolerance of transgenic plants to drought (measurement of water percentage as a consequence of water withdrawal), desiccation (measurement of water loss as a consequence leaf detaching) and temperature stresses (germination at 15 C and 35C). Transgenic tobacco plant lines registered higher germination rates under osmotic and temperature stress situations than did wild-type plants. Responses to drought and desiccation stresses were similar for all plant lines. It can hence be suggested that the heterologous expression of TPS1 gene from Arabidopsis can be used successfully to increase abiotic stress tolerance in model plants and probably in other crops.

This is a preview of subscription content, access via your institution.

References

  • Avonce, N., B. Leyman, O. Mascorro-Gallardo, P. van Dijck, J.M. Thevelein & G. Iturriaga, 2004. The Arabidopsis Trehalose-6-phosphate synthase AtTPS1 gene is a regulator of glucose, abscisic acid and stress signaling. Plant Physiol 136: 3649-3659.

    Article  PubMed  CAS  Google Scholar 

  • Bajaj, S., J. Targolli, L.F. Liu, T.H. David Ho & R. Wu, 1999. Transgenic approaches to increase dehydration-stress tolerance in plants. Mol Breed 5: 493–503.

    Article  CAS  Google Scholar 

  • Blazquez, M.A., E. Santos, C.L. Flores, J.M. Martinez-Zapater, J. Salinas & C. Gancedo, 1998. Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J 13: 685–689.

    Article  PubMed  CAS  Google Scholar 

  • Chang, S., J. Poryear & J. Cairney, 1993. A simple and efficient method for RNA isolation from pine tree. Plant Mol Biol Rep 11: 113–116.

    CAS  Google Scholar 

  • D'Halluin, K., M. de Block, J. Denecke, J. Janssens, J. Leemans, A. Reymaerts & J. Botterman, 1995. The bar gene as selectable and screenable marker in plant engineering: Recombinant DNA methodology II, pp. 157–168. Academic Press, New York.

    Google Scholar 

  • Dellaporta, S., J. Wood & J. Hicks, 1983. A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1: 19–21.

    CAS  Google Scholar 

  • Elbein, A.D., 1974. The metabolism of α,α-trehalose. Adv Carbohydr Chem Biochem 30: 227–256.

    PubMed  CAS  Article  Google Scholar 

  • Garg, A.K., J.K. Kim, A.P. Ranwala, Y.D. Choi, L.V. Kochian & R.J. Wu, 2002. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Nat Acad Sci USA 99: 15898–15903.

    Article  PubMed  CAS  Google Scholar 

  • Goddijn, O.J. & K. van Dun, 1999. Trehalose metabolism in plants. Trends in Plant Science 8: 315–319.

    Google Scholar 

  • Goddijn, O.J., T.C. Verwoerd, E. Moogd, R.W. Krutwagen, P.T. de Graaf, J. Poels, K. van Dun, A.S. Ponstein, B. Damm & J. Pen, 1997. Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant physiol 113: 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Hellens, R.P., E.A. Edwards, N.R. Leyland, S. Bean & P.M. Mullineaux, 2000. pGreen, versatile and flexible binary T1 vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42: 819–832.

    Article  PubMed  CAS  Google Scholar 

  • Holmström, K.O., E. Mäntylä, B. Wellin, A. Mandal & E.T. Palva, 1996. Drought tolerance in tobacco. Nature 379: 683–684.

    Google Scholar 

  • Horsh, R.B., J.F. Fry, N.L. Hoffmann, D. Eichholtz, S.G. Rogers & R.T. Fraley, 1985. Transferring genes into plants. Science 227: 1229–1231.

    Google Scholar 

  • Ingram, J. & D. Bartels, 1996. The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Plant Mol Biol 47: 377–403.

    CAS  Article  Google Scholar 

  • Iturriaga, G., D.F. Gaff & R. Zentella, 2000. New desiccation tolerant plants, including a grass in the central highlands of Mexico, accumulate trehalose. Aust J Bot 48: 153–158.

    Article  Google Scholar 

  • Jang, I.C., S.J. Oh, J.S. Seo, W.B. Choi, S.Y. Song, C.H. Kim, Y.S. Kim, H.S. Seo, Y.D. Choi, B.H. Nahm & J.K. Kim, 2003. Expression of a bifunctional fusion of the Escherichia coli genes for Trehalose-6-phosphate synthase and Trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131: 516–524.

    Article  PubMed  CAS  Google Scholar 

  • Leyman, B., P. van Dijck & J.M. Thevelein, 2001. An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends in Plant Science 6: 510–513.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T. & F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497.

    CAS  Google Scholar 

  • Nuccio, M.J., D. Rhodes, S.D. McNeil & A.D. Hanson, 1999. Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 2: 128–134.

    Article  PubMed  CAS  Google Scholar 

  • Pellny, T.K., O. Ghannoum, J.P. Conroy, H. Schueppman, S. Smeekens, J. Androlojc, K.P. Krause, O. Goddijn & M. Paul, 2004. Genetic modification of photosynthesis with E. coli genes for trehalose synthesis. Plant Biotechnol J 2: 71–82.

    CAS  Google Scholar 

  • Penna, S., 2003. Building stress tolerance through over-producing trehalose in transgenic plants. Trends Plant Sci 8: 355-357.

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits, E., N. Terry, T. Sears, H. Kim, A. Zayed, S. Hwang, K. van Dun, E. Voogd, T.C. Verwoerd, R.H. Krutwagen & O.J. Goddijn, 1998. Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol 152: 525–532.

    CAS  Google Scholar 

  • Romero, C., J.M. Bellés, J.L. Vayá, R. Serrano & F.A. Culiañez-Maciá, 1997. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: Pleiotropic phenotypes include drought tolerance. Planta 201: 293–297.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook, J., E.F. Fritsch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbour Laboratory Press, Woodbury, NY.

    Google Scholar 

  • Scott, P., 1999. Resurrection plants and the secrets of eternal leaf. Ann Bot 85: 159–166.

    Google Scholar 

  • Siedow, J.N., 2001. Feeding ten billion people, three views. Plant Physiol 126: 20–22.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, H.C., J.H. Crouch, K.K. Sharma, N. Seetharama & C.T. Hash, 2002. Applications of biotechnology for crop improvement: Prospects and constraints. Plant Sci 163: 381–395.

    Article  CAS  Google Scholar 

  • Tobwin, H., T. Stachelin & J. Gordon, 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Nat Acad Sci USA 76: 4350–4354.

    Google Scholar 

  • Veluthambi, K., S. Mahadevan & R. Maheshwari, 1981. Trehalose toxicity in Cuscuta reflexa – correlation with low trehalase activity. Plant Physiol 68: 1369–1374.

    CAS  PubMed  Article  Google Scholar 

  • Willadino, L., T. Câmara, N. Boget, M.A. Santos & J.M. Torné, 1996. Polyamine and free amino acid variations in NaCl treated embryogenic maize callus from sensitive and resistant cultivars. J. Plant Physiol 149: 178–185.

    Google Scholar 

  • Wingler, A., 2002. The function of trehalose biosynthesis in plants. Phyochemistry 60: 437–440.

    CAS  Google Scholar 

  • Yeo, E.T., H.B. Kwon, S.E. Han, J.T. Lee, J.C. Ryu & M.O. Byun, 2000. Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Sacharomyces cerevisae. Mol Cells 10: 263–268.

    PubMed  CAS  Google Scholar 

  • Zhu, J.K., 2001. Plant salt tolerance. Trends Plant Sci 6: 66–71.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André M. Almeida.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Almeida, A.M., Villalobos, E., Araújo, S.S. et al. Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses. Euphytica 146, 165–176 (2005). https://doi.org/10.1007/s10681-005-7080-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-005-7080-0

Key words

  • abiotic stress tolerance
  • model plant
  • trehalose
  • tobacco