Skip to main content
Log in

An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Recognizing the enormous potential of DNA markers in plant breeding, many agricultural research centers and plant breeding institutes have adopted the capacity for marker development and marker-assisted selection (MAS). However, due to rapid developments in marker technology, statistical methodology for identifying quantitative trait loci (QTLs) and the jargon used by molecular biologists, the utility of DNA markers in plant breeding may not be clearly understood by non-molecular biologists. This review provides an introduction to DNA markers and the concept of polymorphism, linkage analysis and map construction, the principles of QTL analysis and how markers may be applied in breeding programs using MAS. This review has been specifically written for readers who have only a basic knowledge of molecular biology and/or plant genetics. Its format is therefore ideal for conventional plant breeders, physiologists, pathologists, other plant scientists and students.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ablett, G.A., A. Karakousis, L. Banbury, M. Cakir, T.A. Holton, P. Langridge & R.J. Henry, 2003. Application of SSR markers in the construction of Australian barley genetic maps. Aust J Agric Res 54: 1187–1195.

    Article  CAS  Google Scholar 

  • Anderson, J., G. Churchill, J. Autrique, S. Tanksley & M. Sorrells, 1993. Optimizing parental selection for genetic linkage maps. Genome 36: 181–186.

    CAS  PubMed  Google Scholar 

  • Asins, M., 2002. Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121: 281–291.

    Article  Google Scholar 

  • Baird, V., A. Abbott, R. Ballard, B. Sosinski & S. Rajapakse, 1997. DNA Diagnostics in Horticulture, p. 111–130 In: P. Gresshoff (Ed.), Current Topics in Plant Molecular Biology: Technology Transfer of Plant Biotechnology. CRC Press, Boca Raton.

    Google Scholar 

  • Baird, W.V., R.E. Ballard, S. Rajapakse & A.G. Abbott, 1996. Progress in Prunus mapping and application of molecular markers to germplasm improvement. HortScience 31: 1099–1106.

    CAS  Google Scholar 

  • Barone, A., 2004. Molecular marker-assisted selection for potato breeding. Am J Potato Res 81: 111–117.

    Article  Google Scholar 

  • Barrett, B., A. Griffiths, M. Schreiber, N. Ellison, C. Mercer, J., B. Ong, J. Forster, T. Sawbridge, G. Spangenburg, G. Bryan & D. Woodfield, 2004. A microsatellite map of white clover. Theor Appl Genet 109: 596–608.

    Article  CAS  PubMed  Google Scholar 

  • Basten, C.J., B.S. Weir & Z.-B. Zeng, 1994. Zmap-a QTL cartographer. In: J.S.G.C. Smith, B.J. Benkel, W.F. Chesnais, J.P. Gibson, B.W. Kennedy & E.B. Burnside (Eds.), Proceedings of the 5th World Congress on Genetics Applied to Livestock Production: Computing Strategies and Software, Guelph, Ontario, Canada. Published by the Organizing Committee, 5th World Congress on Genetics Applied to Livestock Production.

  • Basten, C., B. Weir, Z.-B. Zeng, 2001. QTL Cartographer. Department of Statistics, North Carolina State University, Raleigh, NC.

    Google Scholar 

  • Beattie, A., J. Larsen, T. Michaels & K. Pauls, 2003. Mapping quantitative trait loci for a common bean (Phaseolus vulgaris L.) ideotype. Genome 46: 411–422.

    Article  CAS  PubMed  Google Scholar 

  • Beavis, W., 1998. QTL Analyses: Power, Precision and Accuracy. In: A.H. Paterson (Ed.), Molecular Dissection of Complex Traits. CRC Press, Boca Raton.

    Google Scholar 

  • Beckmann, J. & M. Soller, 1986. Restriction fragment length polymorphisms in plant genetic improvement. Oxford Surveys of Plant Mol Biol Cell Biol 3: 197–250.

    Google Scholar 

  • Bernacchi, D., T. Beck-Bunn, Y. Eshed, S. Inai, J. Lopez, V. Petiard, H. Sayama, J. Uhlig, D. Zamir & S. Tanksley, 1998. Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L-pimpinellifolium. Theor Appl Genet 97: 170–180.

    Article  CAS  Google Scholar 

  • Blair, M., A. Garris, A. Iyer, B. Chapman, S. Kresovich & S. McCouch, 2003. High resolution genetic mapping and candidate gene identification at the xa5 locus for bacterial blight resistance in rice (Oryza sativa L.). Theor Appl Genet 107: 62–73.

    Article  CAS  PubMed  Google Scholar 

  • Bohn, M., S. Groh, M.M. Khairallah, D.A. Hoisington, H.F. Utz & A.E. Melchinger, 2001. Re-evaluation of the prospects of marker-assisted selection for improving insect resistance against Diatraea spp. in tropical maize by cross validation and independent validation. Theor Appl Genet 103: 1059–1067.

    Article  Google Scholar 

  • Brondani, C., P. Hideo, N. Rangel, T. Cristina, O. Borba, R. Pereira & V. Brondani, 2003. Transferability of microsatellite and sequence tagged site markers in Oryza species. Hereditas 138: 187–192.

    Article  PubMed  Google Scholar 

  • Cakir, M., S. Gupta, G.J. Platz, G.A. Ablett, R. Loughman, L.C. Emebiri D. Poulsen, C.D. Li, R.C.M. Lance, N.W. Galwey, M.G.K. Jones & R. Appels, 2003. Mapping and validation of the genes for resistance to Pyrenophora teres f. teres in barley (Hordeum vulgare L.). Aust J Agric Res 54: 1369–1377.

    Article  CAS  Google Scholar 

  • Campbell, A.W., G. Daggard, F. Bekes, A. Pedler, M.W. Sutherland & R. Appels, 2001. Targetting AFLP-DNA markers to specific traits and chromosome regions. Aust J Agric Res 52: 1153–1160.

    Article  CAS  Google Scholar 

  • Cato, S., R. Gardner, J. Kent & T. Richardson, 2001. A rapid PCR-based method for genetically mapping ESTs. Theor Appl Genet 102: 296–306.

    Article  CAS  Google Scholar 

  • Chalmers, K.J., A.W. Campbell, J. Kretschmer, A. Karakousis, P.H. Henschke, S. Pierens, N. Harker, M. Pallotta, G.B. Cornish, M.R. Shariflou, L.R. Rampling, A. McLauchlan, G. Daggard, P.J. Sharp, T.A. Holton, M.W. Sutherland, R. Appels & P. Langridge, 2001. Construction of three linkage maps in bread wheat, Triticum aestivum. Aust J Ag Res 52: 1089–1119.

    Article  CAS  Google Scholar 

  • Chunwongse, J., S. Doganlar, C. Crossman, J. Jiang & S.D. Tanksley, 1997. High-resolution genetic map the Lv resistance locus in tomato. Theor Appl Genet 95: 220–223.

    Article  CAS  Google Scholar 

  • Churchill, G.A. & R.W. Doerge, 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.

    CAS  PubMed  Google Scholar 

  • Collard, B.C.Y., E.C.K. Pang & P.W.J. Taylor, 2003. Selection of wild Cicer accessions for the generation of mapping populations segregating for resistance to ascochyta blight. Euphytica 130: 1–9.

    Article  CAS  Google Scholar 

  • Collins, H.M., J.F. Panozzo, S.J. Logue, S.P. Jefferies & A.R. Barr, 2003. Mapping and validation of chromosome regions associated with high malt extract in barley (Hordeum vulgare L.). Aust J Agric Res 54: 1223–1240.

    Article  CAS  Google Scholar 

  • Danesh, D., S. Aarons, G. McGill & N. Young, 1994. Genetic dissection of oligogenic resistance to bacterial wilt in tomato. Mol Plant–Microbe Interact 7: 464–471.

    CAS  PubMed  Google Scholar 

  • Darvasi, A., A. Weinreb, V. Minke, J.I. Weller & M. Soller, 1993. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134: 943–951.

    CAS  PubMed  Google Scholar 

  • Davierwala, A., K. Chowdari, S. Kumar, A. Reddy, P. Ranjekar & V. Gupta, 2000. Use of three different marker systems to estimate genetic diversity of Indian elite rice varieties. Genetica 108: 269–284.

    Article  CAS  PubMed  Google Scholar 

  • Doerge, R.W., 2002. Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3: 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Donini, P., P. Stephenson, G. Bryan & R. Koebner, 1998. The potential of microsatellites for high throughput genetic diversity assessment in wheat and barley. Genet Resour Crop Evol 45: 415–451.

    Article  Google Scholar 

  • Dreher, K., M. Khairallah, J. Ribaut & M. Morris, 2003. Money matters (I): Costs of field and laboratory procedures associated with conventional and marker-assisted maize breeding at CIMMYT. Mol Breed 11: 221–234.

    Article  Google Scholar 

  • Eagles, H., H. Bariana, F. Ogbonnaya, G. Rebetzke, G. Hollamby, R. Henry, P. Henschke & M. Carter, 2001. Implementation of markers in Australian wheat breeding. Aust J Agric Res 52: 1349–1356.

    Article  CAS  Google Scholar 

  • Ellis, M.H., W. Spielmeyer, K.R. Gale, G.J. Rebetzke & R.A. Richards, 2002. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105: 1038–1042.

    Article  CAS  PubMed  Google Scholar 

  • Faris, J.D., K.M. Haen & B.S. Gill, 2000. Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154: 823–835.

    CAS  PubMed  Google Scholar 

  • Fasoula, V.A., D.K. Harris, M.A. Bailey, D.V. Phillips & H.R. Boerma, 2003. Identification, mapping, and confirmation of a soybean gene for bud blight resistance. Crop Sci 43: 1754–1759.

    Article  CAS  Google Scholar 

  • Flandez-Galvez, H., P.K. Ades, R. Ford, E.C.K. Pang & P.W.J.Taylor, 2003a. QTL analysis for ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Theor Appl Genet 107: 1257–1265.

    Article  CAS  Google Scholar 

  • Flandez-Galvez, H., R. Ford, E.C.K. Pang & P.W.J. Taylor, 2003b. An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence tagged microsatellite site and resistance gene analog markers. Theor Appl Genet 106: 1447– 1456.

    CAS  Google Scholar 

  • Foolad, M. & R. Jones, 1993. Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet 87: 184–192.

    Article  CAS  Google Scholar 

  • Ford, R., E.C.K. Pang & P.W.J. Taylor, 1999. Genetics of resistance to ascochyta blight (Ascochyta lentis) of lentil and the identification of closely linked RAPD markers. Theor Appl Genet 98: 93–98.

    Article  CAS  Google Scholar 

  • Forster, J.W., E.S. Jones, R. Kolliker, M.C. Drayton, J.L. Dumsday, M.P. Dupal, K.M. Guthridge, N.L. Mahoney, E. van Zijll de Jong & K.F. Smith, 2000. Development and implementation of molecular markers for crop improvement. In: ‘Molecular Breeding of Forage Crops.’ In: G. Spangenberg (ed.), Proceedings of the 2nd International Symposium, Lorne and Hamilton, Victoria Australia, November 19–24, pp. 101–133, Kluwer Academic Publishers, London.

    Google Scholar 

  • Fregene, M., E. Okogbenin, C. Mba, F. Angel, M.C. Suarez, G. Janneth, P. Chavarriaga, W. Roca, M. Bonierbale & J. Tohme, 2001. Genome mapping in cassava improvement: Challenges, achievements and opportunities. Euphytica 120: 159–165.

    Article  CAS  Google Scholar 

  • Frisch, M., M. Bohn & A.E. Melchinger, 1999. Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39: 1295–1301.

    Article  Google Scholar 

  • Frisch, M., M. Bohn & A.E. Melchinger, 2000. PLABSIM: Software for simulation of marker-assisted backcrossing. J Hered 91: 86–87.

    Article  CAS  PubMed  Google Scholar 

  • Gale, M.D. & K.M. Devos, 1998. Plant comparative genetics after 10 years. Science 282: 656–659.

    Article  CAS  PubMed  Google Scholar 

  • Gardiner, J., E. Coe, S. Melia-Hancock, D. Hoisington & S. Chao, 1993. Development of a core RFLP map in maize using an immortalised F2 population. Genetics 134: 917– 930.

    CAS  PubMed  Google Scholar 

  • Gebhardt, C. & J.P.T. Valkonen, 2001. Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol 39: 79–102.

    Article  CAS  PubMed  Google Scholar 

  • George, M.L.C., B.M. Prasanna, R.S. Rathore, T.A.S. Setty, F. Kasim, M. Azrai, S. Vasal, O. Balla, D. Hautea, A. Canama, E. Regalado, M. Vargas, M. Khairallah, D. Jeffers & D. Hoisington, 2003. Identification of QTLs conferring resistance to downy mildews of maize in Asia. Theor Appl Genet 107: 544–551.

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni, J., R. Wing, M. Ganal & S. Tanksley, 1991. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acid Res 19: 6553–6558.

    CAS  PubMed  Google Scholar 

  • Glover, K.D., D. Wang, P.R. Arelli, S.R. Carlson, S.R. Cianzio & B.W. Diers, 2004. Near isogenic lines confirm a soybean cyst nematode resistance gene from PI 88788 on linkage group J. Crop Sci 44: 936–941.

    Article  Google Scholar 

  • Gu, W., N. Weeden, J. Yu & D. Wallace, 1995. Large-scale, cost-effective screening of PCR products in marker-assisted selection applications. Theor Appl Genet 91: 465–470.

    Article  CAS  Google Scholar 

  • Gupta, P., R. Varshney, P. Sharma & B. Ramesh, 1999. Molecular markers and their applications in wheat breeding. Plant Breed 118: 369–390.

    Article  CAS  Google Scholar 

  • Gupta, P.K., J.K. Roy & M. Prasad, 2001. Single nucleotide polymorphisms: A new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80: 524–535.

    CAS  Google Scholar 

  • Hackett, C., 2002. Statistical methods for QTL mapping in cereals. Plant Mol Biol 48: 585–599.

    Article  CAS  PubMed  Google Scholar 

  • Haley, C. & L. Andersson, 1997. Linkage mapping of quantitative trait loci in plants and animals, pp. 49–71. In: P. Dear (Ed.), Genome mapping–A practical approach, Oxford University Press, New York.

    Google Scholar 

  • Han, F., A. Kleinhofs, S. Ullrich, A. Kilian, M. Yano & T. Sasaki, 1998. Synteny with rice: Analysis of barley malting quality QTLs and rpg4 chromosome regions. {Genome} 41: 373–380.

    Article  CAS  Google Scholar 

  • Harker, N., L.R. Rampling, M.R. Shariflou, M.J. Hayden, T.A. Holton, M.K. Morell, P.J. Sharp, R.J. Henry & K.J. Edwards, 2001. Microsatellites as markers for Australian wheat improvement. Aust J Agric Res 52: 1121–1130.

    Article  CAS  Google Scholar 

  • Hartl, D. & E. Jones, 2001. Genetics: Analysis of Genes and Genomes, Jones and Bartlett Publishers, Sudbury, MA.

    Google Scholar 

  • Hayashi, K., N. Hashimoto, M. Daigen & I. Ashikawa, 2004. Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet 108: 1212–1220.

    Article  CAS  PubMed  Google Scholar 

  • Henry, R., 1997. Molecular markers in plant improvement. In: Practical Applications of Plant Molecular Biology, pp. 99–132, Chapman and Hall, London.

    Google Scholar 

  • Hittalmani, S., H.E. Shashidhar, P.G. Bagali, N. Huang, J.S. Sidhu, V.P. Singh & G.S. Khush, 2002. Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a doubled haploid rice population. Euphytica 125: 207–214.

    Article  CAS  Google Scholar 

  • Hori, K., T. Kobayashi, A. Shimizu, K. Sato, K. Takeda & S. Kawasaki, 2003. Efficient construction of high-density linkage map and its application to QTL analysis in barley. Theor Appl Genet 107: 806–813.

    Article  CAS  PubMed  Google Scholar 

  • Huettel, B., P. Winter, K. Weising, W. Choumane, F. Weigand & G. Kahl, 1999. Sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.). Genome 42: 210–217.

    Article  PubMed  Google Scholar 

  • Ishimaru, K., M. Yano, N. Aoki, K. Ono, T. Hirose, S.Y. Lin, L. Monna, T. Sasaki & R. Ohsugi, 2001. Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theor Appl Genet 102: 793–800.

    Article  CAS  Google Scholar 

  • Jahufer, M., M. Cooper, J. Ayres & R. Bray, 2002. Identification of research to improve the efficiency of breeding strategies for white clover in Australia: A review. Aust J Agric Res 53: 239–257.

    Article  Google Scholar 

  • Jahufer, M., B. Barret, A. Griffiths & D. Woodfield, 2003. DNA fingerprinting and genetic relationships among white clover cultivars. In: J. Morton (Ed.), Proceedings of the New Zealand Grassland Association, Vol. 65, pp. 163–169, Taieri Print Limited, Dunedin.

    Google Scholar 

  • Jampatong, C., M. McMullen, B. Barry, L. Darrah, P. Byrne & H. Kross, 2002. Quantitative trait loci for first- and second-generation European corn borer resistance derived from maize inbred Mo47. Crop Sci 42: 584–593.

    Article  CAS  Google Scholar 

  • Jansen, R., 1993. Interval mapping of multiple quantitative trait loci. Genetics 135: 205–211.

    CAS  PubMed  Google Scholar 

  • Jansen, R. & P. Stam, 1994. High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136: 1447–1455.

    CAS  PubMed  Google Scholar 

  • Jones, E.S., W.A. Breese, C.J. Liu, S.D. Singh, D.S. Shaw & J.R. Witcombe, 2002. Mapping quantitative trait loci for resistance to downy mildew in pearl millet: Field and glasshouse screens detect the same QTL. Crop Sci 42: 1316–1323.

    Article  CAS  Google Scholar 

  • Jones, N., H. Ougham & H. Thomas, 1997. Markers and mapping: We are all geneticists now. New Phytol 137: 165–177.

    Article  Google Scholar 

  • Joshi, C. & H. Nguyen, 1993. RAPD (random amplified polymorphic DNA) analysis based intervarietal genetic relationships among hexaploid wheats. Plant Sci 93: 95–103.

    Article  CAS  Google Scholar 

  • Joshi, S., P. Ranjekar & V. Gupta, 1999. Molecular markers in plant genome analysis. Curr Sci 77: 230–240.

    CAS  Google Scholar 

  • Jung, G., H.M. Ariyarathne, D.P. Coyne & J. Nienhuis, 2003. Mapping QTL for bacterial brown spot resistance under natural infection in field and seedling stem inoculation in growth chamber in common bean. Crop Sci 43: 350–357.

    Article  CAS  Google Scholar 

  • Jung, G., P.W. Skroch, J. Nienhuis, D.P. Coyne, E. Arnaud-Santana, H.M. Ariyarathne & J.M. Marita, 1999. Confirmation of QTL associated with common bacterial blight resistance in four different genetic backgrounds in common bean. Crop Sci 39: 1448–1455.

    Article  CAS  Google Scholar 

  • Kantety, R.V., M. La Rota, D.E. Matthews & M.E. Sorrells, 2002. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48: 501–510.

    Article  CAS  PubMed  Google Scholar 

  • Karakousis, A., J.P. Gustafson, K.J. Chalmers, A.R. Barr & P. Langridge, 2003. A consensus map of barley integrating SSR, RFLP, and AFLP markers. Aust J Agric Res 54: 1173– 1185.

    Article  CAS  Google Scholar 

  • Kasha, K.J., 1999. Biotechnology and world food supply. Genome 42: 642–645.

    Article  CAS  PubMed  Google Scholar 

  • Kearsey, M. & H. Pooni, 1996. The genetical analysis of quantitative traits. Chapman & Hall, London.

    Google Scholar 

  • Kelly, J.D. & P.N. Miklas, 1998. The role of RAPD markers in breeding for disease resistance in common bean. Mol Breed 4: 1–11.

    Article  CAS  Google Scholar 

  • Kelly, J.D., P. Gepts, P.N. Miklas & D.P. Coyne, 2003. Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res 82: 135–154.

    Article  Google Scholar 

  • Khairallah, M., M. Bohn, C. Jiang, J. Deutsch, D. Jewell, J. Mihm, A. Melchinger, D. Gonzalez-De-Leon & D. Hoisington, 1998. Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed 117: 309–318.

    Google Scholar 

  • Kochert, G., 1994. RFLP technology, p. 8–38. In: R.L. Phillips & I.K. Vasil (Eds.), DNA-based Markers in Plants. Kluwer Publishers, Dordrecht.

    Google Scholar 

  • Koebner, R.M.D. & R.W. Summers, 2003. 21st century wheat breeding: Plot selection or plate detection? Trends Biotechnol 21: 59–63.

    Article  CAS  PubMed  Google Scholar 

  • Kunzel, G., L. Korzun & A. Meister, 2000. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154: 397–412.

    CAS  PubMed  Google Scholar 

  • Lander, E. & D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

    CAS  PubMed  Google Scholar 

  • Lander, E.S. & L. Kruglyak, 1995. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat Genet 11: 241–247.

    Article  CAS  PubMed  Google Scholar 

  • Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M.J. Daly, S.E. Lincoln & L. Newburg, 1987. Mapmaker an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.

    Article  CAS  PubMed  Google Scholar 

  • Langridge, P., E. Lagudah, T. Holton, R. Appels, P. Sharp & K. Chalmers, 2001. Trends in genetic and genome analyses in wheat: A review. Aust J Agric Res 52: 1043–1077.

    Article  CAS  Google Scholar 

  • Laurie, D. & K. Devos, 2002. Trends in comparative genetics and their potential impacts on wheat and barley research. Plant Mol Biol 48: 729–740.

    Article  CAS  PubMed  Google Scholar 

  • Lecomte, L., P. Duffe, M. Buret, B. Servin, F. Hospital & M. Causse, 2004. Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109: 658–668.

    Article  CAS  PubMed  Google Scholar 

  • Lem, P. & J. Lallemand, 2003. Grass consensus STS markers: An efficient approach for detecting polymorphism in Lolium. Theor Appl Genet 107: 1113–1122.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M., 1995. DNA Markers and Plant Breeding Programs. Adv Agron 55: 265–344.

    CAS  Google Scholar 

  • Lefebvre, V., S. Pflieger, A. Thabuis, C. Caranta, A. Blattes, J.C. Chauvet, A.M. Daubeze & A. Palloix, 2002. Towards the saturation of the pepper linkage map by alignment of three intraspecific maps including known-function genes. Genome 45: 839–854.

    Article  CAS  PubMed  Google Scholar 

  • Lehmensiek, A., A. Esterhuizen, D. van Staden, S. Nelson & A. Retief, 2001. Genetic mapping of gray leaf spot (GLS) resistance genes in maize. Theor Appl Genet 103: 797–803.

    Article  CAS  Google Scholar 

  • Li, L., S. Lu, D. O’Halloran, D. Garvin & J. Vrebalo, 2003. High-resolution genetic and physical mapping of the cauliflower high-beta-carotene gene Or (Orange). Mol Genet Genomic 270: 132–138.

    Article  CAS  Google Scholar 

  • Li, Z., L. Jakkula, R.S. Hussey, J.P. Tamulonis & H.R. Boerma, 2001. SSR mapping and confirmation of the QTL from PI96354 conditioning soybean resistance to southern root-knot nematode. Theor Appl Genet 103: 1167–1173.

    Article  CAS  Google Scholar 

  • Lincoln, S., M. Daly & E. Lander, 1993a. Constructing genetic linkage maps with MAPMAKER/EXP. Version 3.0. Whitehead Institute for Biomedical Research Technical Report, 3rd Edn.

  • Lincoln, S., M. Daly & E. Lander, 1993b. Mapping genes controlling quantitative traits using MAPMAKER/QTL. Version 1.1. Whitehead Institute for Biomedical Research Technical Report, 2nd Edn.

  • Lindhout, P., 2002. The perspectives of polygenic resistance in breeding for durable disease resistance. Euphytica 124: 217–226.

    Article  CAS  Google Scholar 

  • Liu, B., 1998. Statistical Genomics: Linkage, Mapping and QTL Analysis CRC Press, Boca Raton.

    Google Scholar 

  • Liu, S. & J.A. Anderson, 2003. Targeted molecular mapping of a major wheat QTL for Fusarium head blight resistance using wheat ESTs and synteny with rice. Genome 46: 817–823.

    Article  CAS  PubMed  Google Scholar 

  • Lombard, V. & R. Delourme, 2001. A consensus linkage map for rapeseed (Brassica napus L.): Construction and integration of three individual maps from DH populations. Theor Appl Genet 103: 491–507.

    Article  CAS  Google Scholar 

  • Ma, X.F., K. Ross & J.P. Gustafson, 2001. Physical mapping of restriction fragment length polymorphism (RFLP) markers in homoeologous groups 1 and 3 chromosomes of wheat by in situ hybridization. Genome 44: 401–412.

    Article  CAS  PubMed  Google Scholar 

  • Mackill, D.J., H.T. Nguyen & J. Zhan, 1999. Use of molecular markers in plant improvement programs for rainfed lowland rice. Field Crops Res 64: 177–185.

    Article  Google Scholar 

  • Manly, K.F., H. Cudmore Robert, Jr. & J.M. Meer, 2001. Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12: 930–932.

    Article  CAS  PubMed  Google Scholar 

  • Marquez-Cedillo, L., P. Hayes, A. Kleinhofs, W. Legge, B. Rossnagel, K. Sato, S. Ullrich & D. Wesenberg, 2001. QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet 103: 625–637.

    CAS  Google Scholar 

  • Masi, P., P.L.S. Zeuli & P. Donini, 2003. Development and analysis of multiplex microsatellite markers sets in common bean (Phaseolus vulgaris L.). Mol Breed 11: 303–313.

    Article  CAS  Google Scholar 

  • McCouch, S.R. & R.W. Doerge, 1995. QTL mapping in rice. Trends Genet 11: 482–487.

    Article  CAS  PubMed  Google Scholar 

  • McCouch, S.R., X. Chen, O. Panaud, S. Temnykh, Y. Xu, Y. Cho, N. Huang, T. Ishii & M. Blair, 1997. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol 35: 89–99.

    Article  CAS  PubMed  Google Scholar 

  • Mehlenbacher, S.A., 1995. Classical and molecular approaches to breeding fruit and nut crops for disease resistance. HortScience 30: 466–477.

    Google Scholar 

  • Melchinger, A.E., H.F. Utz & C.C. Schon, 1998. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149: 383–403.

    CAS  PubMed  Google Scholar 

  • Meyer, K., G. Benning & E. Grill, 1996. Cloning of plant genes based on genetic map position. In: A.H. Paterson (Ed.), Genome mapping in plants, pp. 137–154. R G Landes Company, San Diego, California Academic Press, Austin, Texas.

    Google Scholar 

  • Michelmore, R., 1995. Molecular approaches to manipulation of disease resistance genes. Annu Rev Phytopathol 33: 393–427.

    Article  CAS  PubMed  Google Scholar 

  • Michelmore, R., I. Paran & R. Kesseli, 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88: 9828–9832.

    CAS  PubMed  Google Scholar 

  • Mohan, M., S. Nair, A. Bhagwat, T.G. Krishna, M. Yano, C.R. Bhatia & T. Sasaki, 1997. Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3: 87–103.

    Article  CAS  Google Scholar 

  • Mohapatra, T., K.S. Singh, S. Swain, R. Sharma & N. Singh, 2003. STMS-based DNA fingerprints of the new plant type wheat lines. Curr Sci 84: 1125–1129.

    CAS  Google Scholar 

  • Morgante, M. & F. Salamini, 2003. From plant genomics to breeding practice. Curr Opin Biotechnol 14: 214–219.

    Article  CAS  PubMed  Google Scholar 

  • Morris, M., K. Dreher, J.M. Ribaut & M. Khairallah, 2003. Money matters (II): Costs of maize inbred line conversion schemes at CIMMYT using conventional and marker-assisted selection. Mol Breed 11: 235–247.

    Article  Google Scholar 

  • Muehlbauer, F., W. Kaiser & C. Simon, 1994. Potential for wild species in cool season food legume breeding. Euphytica 73: 109–114.

    Article  Google Scholar 

  • Nelson, J.C., 1997. Qgene–-software for marker-based genomic analysis and breeding. Mol Breed 3: 239–245.

    Article  CAS  Google Scholar 

  • Ogbonnaya, F.C., N.C. Subrahmanyam, O. Moullet, J. de Majnik, H.A. Eagles, J.S. Brown, R.F. Eastwood, J. Kollmorgen, R. Appels & E.S. Lagudah, 2001. Diagnostic DNA markers for cereal cyst nematode resistance in bread wheat. Aust J Agric Res 52: 1367–1374.

    Article  CAS  Google Scholar 

  • Ortiz, R., 1998. Critical role of plant biotechnology for the genetic improvement of food crops: Perspectives for the next millennium. Electron J Biotechnol [online] 1(3): Issue of August 15.

  • Paran, I. & R. Michelmore, 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85: 985–993.

    Article  CAS  Google Scholar 

  • Paterson, A., S. Tanksley & M.E. Sorrels, 1991a. DNA markers in plant improvement. Adv Agron 44: 39–90.

    Article  Google Scholar 

  • Paterson, A.H., 1996a. Making genetic maps. In: A.H. Paterson (Ed.), Genome Mapping in Plants, pp. 23–39. R. G. Landes Company, San Diego, California; Academic Press, Austin, Texas.

    Google Scholar 

  • Paterson, A.H., 1996b. Mapping genes responsible for differences in phenotype, In: A.H. Paterson (Ed.), Genome Mapping in Plants, pp. 41–54. R. G. Landes Company, San Diego, California; Academic Press; Austin, Texas.

    Google Scholar 

  • Paterson, A.H., E.S. Lander, J.D. Hewitt, S. Peterson, S.E. Lincoln & S.D. Tanksley, 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721–726.

    Article  CAS  PubMed  Google Scholar 

  • Paterson, A.H., S. Damon, J.D. Hewitt, D. Zamir, H.D. Rabinowitch, S.E. Lincoln, E.S. Lander & S.D. Tanksley, 1991b. Mendelian factors underlying quantitative traits in tomato comparison across species generations and environments. Genetics 127: 181–198.

    CAS  Google Scholar 

  • Penner, G., 1996. RAPD analysis of plant genomes, In: P.P. Jauhar (Ed.), Methods of Genome Analysis in Plants, pp. 251–268. CRC Press, Boca Raton.

    Google Scholar 

  • Perovic, D., N. Stein, H. Zhang, A. Drescher, M. Prasad, R. Kota, D. Kopahnke & A. Graner, 2004. An integrated approach for comparative mapping in rice and barley with special reference to the Rph16 resistance locus. Funct Integr Genomics 4: 74–83.

    Article  CAS  PubMed  Google Scholar 

  • Pflieger, S., V. Lefebvre & M. Causse, 2001. The candidate gene approach in plant genetics: A review. Mol Breed 7: 275–291.

    Article  CAS  Google Scholar 

  • Pilet-Nayel, M.L., F.J. Muehlbauer, R.J. McGee, J.M. Kraft, A. Baranger & C.J. Coyne, 2002. Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor Appl Genet 106: 28–39.

    CAS  PubMed  Google Scholar 

  • Polacco, M., E. Coe, Z. Fang, D. Hancock, H. Sanchez-Villeda & S. Schroeder, 2002. MaizeDB–a functional genomics perspective. Comp Funct Genomics 3: 128–131.

    Article  CAS  PubMed  Google Scholar 

  • Powell, W., G. Machray & J. Provan, 1996. Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1: 215–222.

    Google Scholar 

  • Price, A. & B. Courtois, 1999. Mapping QTLs associated with drought resistance in rice: Progress, problems and prospects. Plant Growth Reg 29: 123–133.

    Article  CAS  Google Scholar 

  • Rafalski, A., 2002. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5: 94–100.

    Article  CAS  PubMed  Google Scholar 

  • Rafalski, J. & S. Tingey, 1993. Genetic diagnostics in Plant Breed: RAPDs, microsatellites and machines. Trends Genet 9: 275–280.

    Article  CAS  PubMed  Google Scholar 

  • Rampling, L.R., N. Harker, M.R. Shariflou & M.K. Morell, 2001. Detection and analysis systems for microsatellite markers in wheat. Aust J Agric Res 52: 1131–1141.

    Article  CAS  Google Scholar 

  • Reyna, N. & C.H. Sneller, 2001. Evaluation of marker-assisted introgression of yield QTL alleles into adapted soybean. Crop Sci 41: 1317–1321.

    Article  Google Scholar 

  • Ribaut, J.M. & J. Betran, 1999. Single large-scale marker-assisted selection (SLS-MAS). Mol Breed 5: 531–541.

    Article  Google Scholar 

  • Ribaut, J.-M. & D. Hoisington, 1998. Marker-assisted selection: New tools and strategies. Trends Plant Sci 3: 236–239.

    Article  Google Scholar 

  • Ribaut, J.-M., C. Jiang & D. Hoisington, 2002. Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Sci 42: 557–565.

    Article  Google Scholar 

  • Ribaut, J.-M., X. Hu, D. Hoisington & D. Gonzalez-De-Leon, 1997. Use of STSs and SSRs as rapid and reliable preselection tools in marker-assisted selection backcross scheme. Plant Mol Biol Report 15: 156–164.

    Article  Google Scholar 

  • Ripol, M., G.A. Churchill, J. da Silva & M.E. Sorrells, 1999. Statistical aspects of genetic mapping in autopolyploids. Gene 235: 31–41.

    Article  CAS  PubMed  Google Scholar 

  • Risch, N., 1992. Genetic linkage: Interpreting LOD scores. Science 255: 803–804.

    CAS  PubMed  Google Scholar 

  • Sayed, H., H. Kayyal, L. Ramsey, S. Ceccarelli & M. Baum, 2002. Segregation distortion in doubled haploid lines of barley (Hordeum vulgare L.) detected by simple sequence repeat markers. Euphytica 225: 265–272.

    Article  Google Scholar 

  • Serquen, F., J. Bacher & J. Staub, 1997. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers. Mol Breed 3: 257–268.

    Article  CAS  Google Scholar 

  • Shan, X., T.K. Blake & L.E. Talbert, 1999. Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet 98: 1072–1078.

    Article  CAS  Google Scholar 

  • Sharp, P.J., S. Johnston, G. Brown, R.A. McIntosh, M. Pallotta, M. Carter, H.S. Bariana, S. Khartkar, E.S. Lagudah, R.P. Singh, M. Khairallah, R. Potter & M.G.K. Jones, 2001. Validation of molecular markers for wheat breeding. Aust J Agric Res 52: 1357– 1366.

    Article  CAS  Google Scholar 

  • Skiba, B., R. Ford & E.C.K. Pang, 2004. Construction of a linkage map based on a Lathyrus sativus backcross population and preliminary investigation of QTLs associated with resistance to ascochyta blight. Theor Appl Genet 109: 1726–1735.

    Article  CAS  PubMed  Google Scholar 

  • Snowdon, R. & W. Friedt, 2004. Molecular markers in Brassica oilseeds breeding: Current status and future possibilities. Plant Breed 123: 1–8.

    Article  CAS  Google Scholar 

  • Spielmeyer, W., P.J. Sharp & E.S. Lagudah, 2003. Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Sci 43: 333–336.

    Article  CAS  Google Scholar 

  • Stam, P., 1993. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3: 739–744.

    Article  CAS  Google Scholar 

  • Staub, J.E., F. Serquen & M. Gupta, 1996. Genetic markers, map construction and their application in Plant Breed. HortScience 31: 729–741.

    CAS  Google Scholar 

  • Stuber, C.W., M. Polacco & M.L. Senior, 1999. Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci 39: 1571–1583.

    Article  Google Scholar 

  • Svetleva, D., M. Velcheva & G. Bhowmik, 2003. Biotechnology as a useful tool in common bean (Phaseolus vulgaris L.) improvement: A review. Euphytica 131: 189–200.

    CAS  Google Scholar 

  • Tanksley, S.D., 1993. Mapping polygenes. Annu Rev Genet 27: 205–233.

    CAS  PubMed  Google Scholar 

  • Tanksley, S.D., M.W. Ganal, J.P. Prince, M.C. De Vicente, M.W. Bonierbale, P. Broun, T.M. Fulton, J.J. Giovannoni & S. Grandillo, 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141–1160.

    CAS  PubMed  Google Scholar 

  • Tanksley, S.D. & J.C. Nelson, 1996. Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92: 191–203.

    Google Scholar 

  • Tanksley, S.D., M. Ganal & G.B. Martin, 1995. Chromosome landing –- a paradigm for map-based cloning in plants with large genomes. Trends Genet 11: 63–68.

    CAS  PubMed  Google Scholar 

  • Tanksley, S.D., N.D. Young, A.H. Paterson & M. Bonierbale, 1989. RFLP mapping in plant breeding: New tools for an old science. Biotechnology 7: 257–264.

    CAS  Google Scholar 

  • Tanksley, S.D., S. Grandillo, T. Fulton, D. Zamir, Y. Eshed, V. Petiard, J. Lopez & T. Beck-Bunn, 1996. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92: 213–224.

    CAS  Google Scholar 

  • Taramino, G. & S. Tingey, 1996. Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39: 277–287.

    CAS  PubMed  Google Scholar 

  • Tar’an, B., T.E. Michaels & K.P. Pauls, 2002. Genetic mapping of agronomic traits in common bean. Crop Sci 42: 544–556.

    Article  CAS  Google Scholar 

  • Thomas, W., 2003. Prospects for molecular breeding of barley. Ann Appl Biol 142: 1–12.

    CAS  Google Scholar 

  • Tuberosa, R., S. Salvi, M.C. Sanguineti, M. Maccaferri, S. Giuliani & P. Landi, 2003. Searching for quantitative trait loci controlling root traits in maize: A critical appraisal. Plant Soil 255: 35–54.

    CAS  Google Scholar 

  • Utz, H. & A. Melchinger, 1996. PLABQTL: A program for composite interval mapping of QTL. J Quant Trait Loci 2(1).

  • Utz, H.F., A.E. Melchinger & C.C. Schon, 2000. Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154: 1839–1849.

    PubMed  Google Scholar 

  • Van Berloo, R., H. Aalbers, A. Werkman & R.E. Niks, 2001. Resistance QTL confirmed through development of QTL-NILs for barley leaf rust resistance. Mol Breed 8: 187–195.

    CAS  Google Scholar 

  • Van Sanford, D., J. Anderson, K. Campbell, J. Costa, P. Cregan, C. Griffey, P. Hayes & R. Ward, 2001. Discovery and deployment of molecular markers linked to fusarium head blight resistance: An integrated system for wheat and barley. Crop Sci 41: 638–644.

    Article  Google Scholar 

  • Visscher, P., R. Thompson & C. Haley, 1996. Confidence intervals in QTL mapping by bootstrapping. Genetics 143: 1013–1020.

    CAS  PubMed  Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hoernes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414.

    CAS  PubMed  Google Scholar 

  • Wang, G. & A.H. Paterson, 1994. Assessment of DNA pooling strategies for mapping of QTLs. Theor Appl Genet 88: 355–361.

    Google Scholar 

  • Wang, Z., G. Taramino, D. Yang, G. Liu, S. Tingey, G.-H. Miao & G. Wang, 2001. Rice ESTs with disease-resistance gene- or defense-response gene-like sequences mapped to regions containing major resistance genes or QTLs. Mol Genet Genomics 265: 302–310.

    CAS  PubMed  Google Scholar 

  • Warburton, M., X. Xianchun, J. Crossa, J. Franco, A.E. Melchinger, M. Frisch, M. Bohn & D. Hoisington, 2002. Genetic characterization of CIMMYT inbred maize lines and open pollinated population using large scale fingerprinting methods. Crop Sci 42: 1832–1840.

    Article  Google Scholar 

  • Weeden, N., G. Timmerman & J. Lu, 1994. Identifying and mapping genes of economic significance. Euphytica 73: 191–198.

    CAS  Google Scholar 

  • Weising, K., H. Nybom, K. Wolff & W. Meyer, 1995. Applications of DNA Fingerprinting in Plants and Fungi DNA Fingerprinting in Plants and Fungi, CRC Press, Boca Raton.

    Google Scholar 

  • Welsh, J. & M. McClelland, 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18: 7213–7218.

    CAS  PubMed  Google Scholar 

  • Williams, J., A. Kubelik, K. Livak, J. Rafalski & S. Tingey, 1990. DNA Polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18: 6531–6535.

    CAS  PubMed  Google Scholar 

  • Williams, K.J., 2003. The molecular genetics of disease resistance in barley. Aust J Agric Res 54: 1065–1079.

    CAS  Google Scholar 

  • Winter, P. & G. Kahl, 1995. Molecular marker technologies for plant improvement. World Journal of Microbiology & Biotechnology 11: 438–448.

    CAS  Google Scholar 

  • Winter, P., T. Pfaff, S. Udupa, B. Huttel, P. Sharma, S. Sahi, R. Arreguin-Espinoza, F. Weigand, F.J. Muehlbauer & G. Kahl, 1999. Characterisation and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262: 90–101.

    Article  CAS  PubMed  Google Scholar 

  • Wissuwa, M. & N. Ae, 2001. Further characterization of two QTLs that increase phosphorus uptake of rice (Oryza sativa L.) under phosphorus deficiency. Plant Soil 237: 275–286.

    Article  CAS  Google Scholar 

  • Witcombe, J.R. & D.S. Virk, 2001. Number of crosses and population size for participatory and classical plant breeding. Euphytica 122: 451–462.

    Article  Google Scholar 

  • Wu, K., W. Burnquist, M.E. Sorrells, T. Tew, P. Moore & S.D. Tanksley, 1992. The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83: 294–300.

    Article  Google Scholar 

  • Xu, Y., L. Zhu, J. Xiao, N. Huang & S.R. McCouch, 1997. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253: 535–545.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, K. & T. Sasaki, 1997. Large-scale EST sequencing in rice. Plant Mol Biol 35: 135–144.

    Article  CAS  PubMed  Google Scholar 

  • Yao, H., Q. Zhou, J. Li, H. Smith, M. Yandeau, B.J. Nikolau & P.S. Schnable, 2002. Molecular characterization of meiotic recombination across the 140-kb multigenic a1-sh2 interval of maize. Proc Natl Acad Sci USA 99: 6157–6162.

    Article  CAS  PubMed  Google Scholar 

  • Young, N.D., 1994. Constructing a plant genetic linkage map with DNA markers, p. 39–57, In: I. K.V. Ronald & L. Phillips (Eds.), DNA-based markers in plants. Kluwer, Dordrecht/Boston/London.

    Google Scholar 

  • Young, N.D., 1996. QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34: 479–501.

    Article  CAS  PubMed  Google Scholar 

  • Young, N.D., 1999. A cautiously optimistic vision for marker-assisted breeding. Mol Breed 5: 505–510.

    Article  Google Scholar 

  • Yu, K., S. Park & V. Poysa, 2000. Marker-assisted selection of common beans for resistance to common bacterial blight: Efficacy and economics. Plant Breed 119: 411–415.

    Article  CAS  Google Scholar 

  • Yu, L.-X. & H. Nguyen, 1994. Genetic variation detected with RAPD markers among upland and lowland rice cultivars (Oryza sativa L.). Theor Appl Genet 87: 668–672.

    Article  CAS  Google Scholar 

  • Zeng, Z.-B., 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457–1468.

    CAS  PubMed  Google Scholar 

  • Zeng, Z.-B., 1993. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90: 10972–10976.

    CAS  PubMed  Google Scholar 

  • Zhang, L.P., G.Y. Lin, D. Nino-Liu & M.R. Foolad, 2003. Mapping QTLs conferring early blight (Alternaria solani) resistance in a Lycopersicon esculentum × L. hirsutum cross by selective genotyping. Mol Breed 12: 3–19.

    Article  CAS  Google Scholar 

  • Zhang, W.K., Y.J. Wang, G.Z. Luo, J.S. Zhang, C.Y. He, X.L. Wu, J.Y. Gai & S.Y. Chen, 2004. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108: 1131– 1139.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Y. Collard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B. et al. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142, 169–196 (2005). https://doi.org/10.1007/s10681-005-1681-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-005-1681-5

Keywords

Navigation