Skip to main content

Development and application of functional markers in maize

Summary

Functional markers (FMs) are derived from polymorphic sites within genes causally involved in phenotypic trait variation (Andersen, J.R. & T. Lübberstedt, 2003. Trends Plant Sci 8: 554–560). FM development requires allele sequences of functionally characterized genes from which polymorphic, functional motifs affecting plant phenotype can be identified. In maize and other species with low levels of linkage disequilibrium, association studies have the potential to identify sequence motifs, such as a few nucleotides or insertions/deletions, affecting trait expression. In one of the pioneering studies, nine sequence motifs in the dwarf8 gene of maize were shown to be associated with variation for flowering time (Thornsberry, J.M., M.M. Goodman, J. Doebley, S. Kresovich, D. Nielsen & E.S. Buckler, 2001. Nat Genet 28: 286–289). Proof of sequence motif function can be obtained by comparing isogenic genotypes differing in single sequence motifs. At current, the most appropriate approach for this purpose in crops is targeting induced local lesions in genomes (TILLING) (McCallum, C.M., L. Comai, E.A. Greene & S. Henikoff, 2000. Nat Biotechnol 18: 455–457). In central Europe, maize is mainly grown as forage crop, with forage quality as major trait, which can be determined as proportion of digestible neutral detergent fiber (DNDF). Brown midrib gene knock out mutations have been shown to be beneficial for forage quality but disadvantageous for overall agronomic performance. Two brown midrib genes (bm1 and bm3) have been shown to be involved in monolignol biosynthesis. These two and additional lignin biosynthesis genes have been isolated based on sequence homology. Additional candidate genes putatively affecting forage quality have been identified by expression profiling using, e.g., isogenic bm lines. Furthermore, we identified an association between a polymorphism at the COMT locus and DNDF in a collection of European elite inbred lines.

This is a preview of subscription content, access via your institution.

References

  • Andersen, J.R. & T. Lübberstedt, 2003. Functional markers in plants. Trends Plant Sci 8: 554–560.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, J.R., T. Schrag, A.E. Melchinger, I. Zein & T. Lübberstedt, 2005. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet 111: 206–217.

    Article  PubMed  CAS  Google Scholar 

  • Barriére, Y. & O. Argillier, 1993. Brown-midrib genes of maize: A review. Agronomie 13: 865–876.

    Google Scholar 

  • Barriere, Y., C. Guillet, D. Goffner & M. Pichon, 2003. Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. A review. Anim Res 52: 193-228.

    CAS  Google Scholar 

  • Bevan, M., K. Mayer, O. White, J.A. Eisen, D. Preuss, T. Bureau, S.L. Salzberg & H.M. Mewes, 2001. Sequence and analysis of the arabidopsis genome. Curr Opin Plant Biol 4: 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Boerjan, W., J. Ralph & M. Baucher, 2003. Lignin biosynthesis. Annu Rev Plant Biol 54: 519–546.

    Article  PubMed  CAS  Google Scholar 

  • Collazo, P., L. Montoliu, P. Puigdomenech & J. Rigau, 1992. Structure and expression of the lignin O-methyltransferase gene from Zea mays L. Plant Mol Biol 20: 857–867.

    Article  PubMed  CAS  Google Scholar 

  • Falush, D., M. Stephens & J.K. Pritchard, 2003. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164: 1567-1587.

    PubMed  CAS  Google Scholar 

  • Flint-Garcia, M., J.M. Thornsberry & E.S. Buckler, 2003. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54: 357–374.

    Article  PubMed  CAS  Google Scholar 

  • Guillet-Claude, C., C. Birolleua-Touchard, D. Manicacci, P.M. Rogowsky, J. Rigau, A. Murigneux, J.-P. Martinant & Y. Barriere 2004. Nucleotide diversity of the ZmPox3 maize peroxidase gene: Relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genet 5:19

    Article  PubMed  Google Scholar 

  • Lübberstedt, T., A.E. Melchinger, S. Fähr, D. Klein, A. Dally & P. Westhoff, 1998. QTL mapping in testcrosses of flint lines of maize: III. Comparison across populations for forage traits. Crop Sci 38: 1278–1289.

    Google Scholar 

  • McCallum, C.M., L. Comai, E.A. Greene & S. Henikoff, 2000. Targeted screening for induced mutations. Nat Biotechnol 18: 455–457.

    PubMed  CAS  Google Scholar 

  • Neuffer, M.G., E.H. Coe & S.R. Wessler, 1997. Mutants of Maize. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Nordborg, M., J.O. Borevitz, J. Bergelson, C.C. Berry, J. Chory, J. Hagenblad, M. Kreitman, J.N. Maloof, T. Noyes, P.J. Oefner, E.A. Stahl & D. Weigel, 2002. The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30: 190–193.

    Article  PubMed  CAS  Google Scholar 

  • Pritchard, J.K., M. Stephens, N.A. Rosenberg & P. Donnelly, 2000. Association mapping in structured populations. Am J Hum Genet 67: 170–181.

    Article  PubMed  CAS  Google Scholar 

  • Quackenbush, J., 2002. Microarray data normalization and transformation. Nat Genet 32: 496–501.

    Article  PubMed  CAS  Google Scholar 

  • Risch, N.J., 2000. Searching for genetic determinants in the new millennium. Nature 405: 847–856.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, D.S. 1985. A possible technique for isolating genic DNA for quantitative traits in plants. J Theor Biol 117: 1–10

    CAS  Google Scholar 

  • Saeed, A.I., V. Sharov, J. White, J. Li, W. Liang, N. Bhagabati, J. Braisted, M. Klapa, T. Currier, M. Thiagarajan, A. Sturn, M. Snuffin, A. Rezantsev, D. Popov, A. Ryltsov, E. Kostukovich, I. Borisovsky, Z. Liu, A. Vinsavich, V. Trush & J. Quackenbush, 2003. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 34(2): 374–378.

    PubMed  CAS  Google Scholar 

  • Saghai-Maroof, M.A., K.M. Soliman, R.A. Jorgensen & R.W. Allard, 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81: 8014-8018.

    PubMed  CAS  Google Scholar 

  • Schaefer, D.G. & J.P. Zryd, 1997. Efficient gene targeting in the moss Physcomitrella patens. Plant J 11: 1195–1206.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.D., D.G. Higgins & T.J. Gibson, 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl Acid Res 22: 4673-4680.

    CAS  Google Scholar 

  • Thornsberry, J.M., M.M. Goodman, J. Doebley, S. Kresovich, D. Nielsen & E.S. Buckler, 2001. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28: 286-289.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lübberstedt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lübberstedt, T., Zein, I., Andersen, J.R. et al. Development and application of functional markers in maize. Euphytica 146, 101–108 (2005). https://doi.org/10.1007/s10681-005-0892-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-005-0892-0

Key words

  • functional markers
  • maize
  • forage quality
  • association study
  • brown midrib