European Journal of Population

, Volume 34, Issue 5, pp 793–817 | Cite as

Trends in the Quantiles of the Life Table Survivorship Function

  • Jorge M. UribeEmail author
  • Helena Chuliá
  • Montserrat Guillen


We offer a new approach for modeling past trends in the quantiles of the life table survivorship function. Trends in the quantiles are estimated, and the extent to which the observed patterns fit the unit root hypothesis or, alternatively, an innovative outlier model, are conducted. Then a factor model is applied to the detrended data, and it is used to construct quantile cycles. We enrich the ongoing discussion about human longevity extension by calculating specific improvements in the distribution of the survivorship function, across its full range, and not only at the central-age ranges. To illustrate our proposal, we use data for the UK from 1922 to 2013. We find that there is no sign in the data of any reduction in the pace of longevity extension during the last decades.


Survivorship function quantiles Longevity extension Structural breaks Population aging Longevity risk 



The support received from the Spanish Ministry of Science/FEDER ECO2013-48326-C2-1-P, ECO2015-66314-R, and FEDER ECO2016 -76203-C2-2-P, is acknowledged. The second author thanks ICREA Academia.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bai, J., & Ng, S. (2008). Large dimensional factor analysis. Foundations and Trends in Econometrics, 3(2), 89–163.CrossRefGoogle Scholar
  2. Bai, J., & Wang, P. (2012). Identification and estimation of dynamic factor models. Munich: Munich University Library. (Munich Personal RePEc Archive 38434).Google Scholar
  3. Basellini, U., & Camarda, C. G. (2016). Modeling and forecasting age at death distributions. Paper presented at European population conference 2016, session 66, forecasting mortality. Available
  4. Beer, J. (2012). Smoothing and projecting age-specific probabilities of death by TOPALS. Demographic Research, 27(20), 543–592.CrossRefGoogle Scholar
  5. Bongaarts, J. (2005a). Five period measures of longevity. Demographic Research, 13(21), 547–558.CrossRefGoogle Scholar
  6. Bongaarts, J. (2005b). Long-range trends in adult mortality: models and projection methods. Demography, 42(1), 23–49.CrossRefGoogle Scholar
  7. Bongaarts, J., & Feeney, G. (2002). How long to we live. Population and Devlopment Review, 28(1), 13–29.CrossRefGoogle Scholar
  8. Bongaarts, J., & Feeney, G. (2003). Estimating mean lifetime. Proceedings of the National Academy of Sciences USA, 100(23), 1327–1333.CrossRefGoogle Scholar
  9. Brouhns, N., & Denuit, M. (2002). Risque de longévité et rentes viagères II. Tables de mortalité prospectives pour la population belge. Belgian Actuarial Bulletin, 2(1), 49–63.Google Scholar
  10. Canudas-Romo, V. (2008). The modal age at death and the shifting mortality hypothesis. Demographics Research, 19(39), 1179–1204.CrossRefGoogle Scholar
  11. Canudas-Romo, V. (2010). Three measures of longevity: Time trends and record values. Demography, 47(2), 299–312.CrossRefGoogle Scholar
  12. Cheung, S., & Robine, J. (2007). Increase in common longevity and the compression of mortality: The case of Japan. Population Studies Journal of Demographics, 61(1), 85–97.CrossRefGoogle Scholar
  13. Chuliá, H., Guillén, M., & Uribe, J. M. (2016). Modeling longevity risk with generalized dynamic factor models and vine-copulas. ASTIN Bulletin The Journal of the International Actuarial Association, 46(1), 165–190.CrossRefGoogle Scholar
  14. D’Amato, V., Haberman, S., Piscopo, G., Russolillo, M., & Trapani, L. (2014). Detecting common longevity trends by a multiple population approach. North American Actuarial Journal, 18(1), 139–149.CrossRefGoogle Scholar
  15. Delwarde, A., Denuit, M., Gillen, M., & Vidiella, A. (2006). Application of the Poisson log-bilinear projection model to the G5 mortality experience. Belgian Actuarial Bulletin, 6(1), 54–68.Google Scholar
  16. Dickey, D., & Fuller, W. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of American Statistical Association, 74(366), 427–431.CrossRefGoogle Scholar
  17. Dong, X., Milholland, B., & Vigj, J. (2016). Evidence for a limit to human lifespan. Nature, 538, 257–259.CrossRefGoogle Scholar
  18. Edwards, R. D., & Tuljapurkar, S. (2005). Inequality in lifespans and a new perspective on mortality convergence across industrialized countries. Population and Development Review, 31(4), 645–674.CrossRefGoogle Scholar
  19. Enders, W. (2010). Applied econometric time series. New York: Wiley.Google Scholar
  20. Engelman, M., Caswell, H., & Agree, E. (2014). Why do lifespan variability trends of the young and old diverge? A perturbation analysis. Demographics Research, 30(48), 1367–1396.CrossRefGoogle Scholar
  21. Engle, R. F., & Granger, C. W. (1987). Co-Integration and error correction: Representation, estimation and testing. Econometrica, 55(2), 251–276.CrossRefGoogle Scholar
  22. Felipe, A., Guillén, M., & Nilesen, J. P. (2001). Longevity studies based on kernel hazard estimation. Insurance Mathematics and Economics, 28(2), 191–204.CrossRefGoogle Scholar
  23. Fledelius, P., Guillén, M., Nielsen, J. P., & Vogelius, M. (2004). Two-dimensional hazard estimation for longevity analysis. Scandinavian Actuarial Journal, 2004(2), 133–156.CrossRefGoogle Scholar
  24. Gaille, S., & Sherris, M. (2011). Modelling mortality with common stochastic long-run trends. The Geneva Papers on Risk and Insurance-Issues and Practics, 36(4), 595–621.CrossRefGoogle Scholar
  25. Gillespie, D., Trotter, M., & Tuljapurkar, S. (2014). Divergence in age patterns of mortality change drives international divergence in lifespan inequality. Demography, 51(3), 1003–1017.CrossRefGoogle Scholar
  26. Guillén, M., & Vidiella-i-Anguera, A. (2005). Forecasting Spanish natural life expectancy. Risk Analysis, 25(5), 1161–1170.CrossRefGoogle Scholar
  27. Horiuchi, S., Ouellette, N., Cheung, S., & Robine, J. (2013). Modal age at death: Lifespan indicator in the era of longevity extension. Vienna Yearbook of Population Research, 11, 37–69.CrossRefGoogle Scholar
  28. Horiuchi, S., Wilmoth, J. R., & Pletcher, S. (2008). A decomposition method based on a model of continuous change. Demography, 45(4), 785–801.CrossRefGoogle Scholar
  29. Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economics Dynamics and Control, 12(2–3), 231–254.CrossRefGoogle Scholar
  30. Kim, D., & Perron, P. (2009). Unit root tests allowing for a break in the trend function at an unknown time under both the null and alternative hypotheses. Journal of Econometrics, 148(1), 1–13.CrossRefGoogle Scholar
  31. King, G., & Soneji, S. (2011). The future of death in America. Demographics Research, 25(1), 1–38.Google Scholar
  32. Lee, R., & Carter, L. (1992). Modeling and forecasting U.S. mortality. Journal of American Statistical Association, 87(419), 659–671.Google Scholar
  33. Lemoine, K. (2014). Mortality regimes and longevity risk in a life annuity portfolio. Scandinavian Actuarial Journal. Scholar
  34. Lutz, W., Sanderson, W., & Scherbov, S. (2008). The coming acceleration of global population ageing. Nature, 451, 716–719.CrossRefGoogle Scholar
  35. Mayhew, L., & Smith, D. (2015). On the decomposition of life expectancy and limits to life. Population Studies Journal of Demographics, 69(1), 73–89.CrossRefGoogle Scholar
  36. Mitchell, D., Brockett, P., Mendoza-Arriaga, R., & Muthuraman, K. (2013). Modeling and forecasting mortality rates. Insurance Mathematics and Economics, 52(2), 275–285.CrossRefGoogle Scholar
  37. Niu, G., & Melenberg, B. (2014). Trends in mortality decrease and economic growth. Demography, 51(5), 1755–1773.CrossRefGoogle Scholar
  38. Oeppen, J., & Vaupel, J. (2002). Broken limits to life expectancy. Science, 296(5570), 1029–1031.CrossRefGoogle Scholar
  39. Olshansky, S. J. (2016). Measuring our narrow stip of life. Nature, 538, 175–176.CrossRefGoogle Scholar
  40. Ouellette, N., Barbieri, M., & Wilmoth, J. R. (2014). Period-based mortality change: turning points in trends since 1950. Population and Development Review, 40(1), 77–106.CrossRefGoogle Scholar
  41. Ouellette, N., & Bourbeau, R. (2011). Changes in the age-at-death distribution in four low mortality countries: A nonparametric approach. Demographics Research, 25(19), 595–628.CrossRefGoogle Scholar
  42. Perron, P., & Zhu, X. (2005). Structural breaks with deterministic and stochastic trends. Journal of Econometrics, 129(1), 65–119.CrossRefGoogle Scholar
  43. Rau, R., Soroko, E., Jasilions, D., & Vaupel, J. (2008). Continued reductions in mortality at advanced ages. Population and Development Review, 34(4), 747–768.CrossRefGoogle Scholar
  44. Rees, P., van der Gaag, N., de Beer, J., & Heins, F. (2012). European regional populations: current trends, future pathways, and policy options. European Journal Population, 28(4), 385–416.CrossRefGoogle Scholar
  45. Riley, J. (2001). Rising life expectancy: a global history. New York: Cambridge University Press.CrossRefGoogle Scholar
  46. Robertson, H., & Allison, D. (2012). A novel generalized normal distribution for human longevity and other negatively skewed data. PLoS ONE, 7(5), e37025.CrossRefGoogle Scholar
  47. Said, S., & Dickey, D. (1984). Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71(3), 599–607.CrossRefGoogle Scholar
  48. Sanderson, W., & Scherbov, S. (2005). Average remaining lifetimes can increase as human populations age. Nature, 435, 811–813.CrossRefGoogle Scholar
  49. Sanderson, W., & Scherbov, S. (2007). A new perspective on population aging. Demographics Research, 16(2), 27–58.CrossRefGoogle Scholar
  50. Shang, H. L., Booth, H., & Hyndman, R. J. (2011). Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods. Demographics Research, 25(5), 113–214.Google Scholar
  51. Stock, J. H., & Watson, M. W. (2002). Forecasting using principal components from a large number of predictors. Journal of American Statistical Association, 97(460), 1167–1179.CrossRefGoogle Scholar
  52. Stoeldraijer, L., van Duin, C., van Wissen, L., & Janssen, F. (2013). Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands. Demographics Research, 29(13), 323–354.CrossRefGoogle Scholar
  53. Torri, T. (2011). Building blocks for a mortality index: an international context. European Actuarial Journal, 1(1), 127–141.CrossRefGoogle Scholar
  54. Vallin, J., & Meslé, F. (2010). Will life expectancy increase indefinitely by three months every year? Population and Societies, 473, 1–4.Google Scholar
  55. Van-Raalte, A., & Caswell, H. (2013). Perturbation analysis of indices of lifespan variability. Demography, 50(5), 1615–1640.CrossRefGoogle Scholar
  56. Vaupel, J., Zhang, Z., & van Raalte, A. (2011). Life expectancy and disparity: an international comparison of the life table data. British Medical Journal Open, 1, e000128. Scholar
  57. Waite, L. (2004). Introduction: The demographic faces of the elderly. Population and Development Review, 30, 3–16.Google Scholar
  58. White, K. (2002). Longevity advances in high-income countries, 1955–96. Population and Development Review, 28(1), 59–76.CrossRefGoogle Scholar
  59. Wilmoth, J. (1998). The future of human longevity: a demographer’s perspective. Science, 280(5362), 395–397.CrossRefGoogle Scholar
  60. Wilmoth, J. (2000). Demography of longevity: past, present and future trends. Experimental Gerontology, 35(9–10), 1111–1129.CrossRefGoogle Scholar
  61. Wilmoth, J., Deegan, L. J., Lundström, H., & Horiuchi, S. (2000). Increase of maximum life-span in Sweden, 1861–1999. Science, 29(5488), 2366–2368.CrossRefGoogle Scholar
  62. Wilmoth, J., & Horiuchi, S. (1999). Rectangularization revisited: variability of age at death within human populations. Demography, 36(4), 475–495.CrossRefGoogle Scholar
  63. Wilmoth, J., & Lundström, H. (1996). Extreme longevity in five countries. European Journal of Population, 12(1), 63–93.CrossRefGoogle Scholar
  64. Wrycza, T. F., & Baudisch, A. (2012). How life expectancy varies with perturbations in age-specific mortality. Demographics Research, 27(13), 365–376.CrossRefGoogle Scholar
  65. Zanotto, L., Canudas-Romo, V., & Mazzuco, S. (2016). Evolution of premature mortality. Paper presented at European population conference 2016, session 86, modelling mortality. Available

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Jorge M. Uribe
    • 1
    • 2
    Email author
  • Helena Chuliá
    • 3
  • Montserrat Guillen
    • 3
  1. 1.Economics Department, Facultad de Ciencias Sociales y EconómicasUniversidad del ValleCaliColombia
  2. 2.Riskcenter-IREA and UB School of Economics, Facultat de Ciències Econòmiques i EmpresarialsUniversity of BarcelonaBarcelonaSpain
  3. 3.Riskcenter-IREA and Department of Econometrics, Facultat de Ciències Econòmiques i EmpresarialsUniversity of BarcelonaBarcelonaSpain

Personalised recommendations