Human-aligned artificial intelligence is a multiobjective problem

Abstract

As the capabilities of artificial intelligence (AI) systems improve, it becomes important to constrain their actions to ensure their behaviour remains beneficial to humanity. A variety of ethical, legal and safety-based frameworks have been proposed as a basis for designing these constraints. Despite their variations, these frameworks share the common characteristic that decision-making must consider multiple potentially conflicting factors. We demonstrate that these alignment frameworks can be represented as utility functions, but that the widely used Maximum Expected Utility (MEU) paradigm provides insufficient support for such multiobjective decision-making. We show that a Multiobjective Maximum Expected Utility paradigm based on the combination of vector utilities and non-linear action–selection can overcome many of the issues which limit MEU’s effectiveness in implementing aligned AI. We examine existing approaches to multiobjective AI, and identify how these can contribute to the development of human-aligned intelligent agents.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    For the purposes of this paper we will ignore the vital issue of who bears legal responsibility for the actions of an AI agent. For a broader discussion of the legal issues around AI see Leenes and Lucivero (2014) and the review of the literature in Section 10 of Mittelstadt et al. (2016).

  2. 2.

    A similar approach can also be applied in the context of utility functions which depend on both state and action, as in Eq. 2.

  3. 3.

    This problem would not arise if the Pareto front shown in Fig.  1 was convex rather than concave in shape. However many problems will naturally result in concave fronts and so it is important that an ethical AI can deal with such problems.

  4. 4.

    Note that depending on the structure of the utility functions, if f is non-linear then Eq. 7 may fail to result in the desired behaviour unless the state vector S also incorporates information about the utility history (Roijers et al. 2013).

  5. 5.

    We assume here for simplicity that all \(U_P\) terms have the same range.

  6. 6.

    Although in this context it is often referred to as multiattribute utility.

References

  1. Abel, D., MacGlashan, J., & Littman, M. L. (2016). Reinforcement learning as a framework for ethical decision making. In Workshops at the Thirtieth AAAI Conference on Artificial Intelligence. Phoenix.

  2. Allen, C., & Wallach, W. (2012). Moral machines: Contradiction in terms or abdication of human responsibility. In P. Lin, K. Abney, & G. A. Bekey (Eds.), Robot ethics: The ethical and social implications of robotics (pp. 55–68). Boston: MIT Press.

    Google Scholar 

  3. Altmann, J. (2013). Arms control for armed uninhabited vehicles: An ethical issue. Ethics and Information Technology, 15(2), 137–152.

    Article  Google Scholar 

  4. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., & Mané, D. (2016). Concrete problems in AI safety. arXiv preprint arXiv:1606.06565.

  5. Anderson, M., & Anderson, S. L. (2007). Machine ethics: Creating an ethical intelligent agent. AI Magazine, 28(4), 15.

    Google Scholar 

  6. Anderson, M., Anderson, S. L., & Armen, C. (2006a). An approach to computing ethics. IEEE Intelligent Systems, 21(4), 56–63.

    Article  Google Scholar 

  7. Anderson, M., Anderson, S. L., & Armen, C. (2006b). Medethex: A prototype medical ethics advisor. In Proceedings of the National Conference On Artificial Intelligence, vol. 21, p. 1759.

  8. Andrighetto, G., Governatori, G., Noriega, P., & van der Torre, L. W. (2013). Normative multi-agent systems (vol. 4). Wadern, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

    MATH  Google Scholar 

  9. Angus, D., & Woodward, C. (2009). Multiple objective ant colony optimisation. Swarm Intelligence, 3(1), 69–85.

    Article  Google Scholar 

  10. Arkin, R. C. (2008). Governing lethal behavior: Embedding ethics in a hybrid deliberative/reactive robot architecture Part I: Motivation and philosophy, In 2008 3rd ACM/IEEE International Conference on Human–Robot Interaction (pp. 121–128).

  11. Armstrong, S., Sandberg, A., & Bostrom, N. (2012). Thinking inside the box: Controlling and using an oracle AI. Minds and Machines, 22(4), 299–324.

    Article  Google Scholar 

  12. Asaro, P. M. (2012). A body to kick, but still no soul to damn: Legal perspectives on robotics. In P. Lin, K. Abney, & G. A. Bekey (Eds.), Robot ethics: The ethical and social implications of robotics (pp. 169–186). Cambridge: MIT Press.

    Google Scholar 

  13. Bentham, J. (1789). The principles of moral and legislation. Oxford: Oxford University Press.

    Google Scholar 

  14. Blythe, J. (1999). Decision-theoretic planning. AI Magazine, 20(2), 37.

    Google Scholar 

  15. Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford: Oxford University Press.

    Google Scholar 

  16. Broersen, J., Dastani, M., Hulstijn, J., & van der Torre, L. (2002). Goal generation in the BOID architecture. Cognitive Science Quarterly, 2(3–4), 428–447.

    Google Scholar 

  17. Brundage, M. (2014). Limitations and risks of machine ethics. Journal of Experimental & Theoretical Artificial Intelligence, 26(3), 355–372.

    Article  Google Scholar 

  18. Castelfranchi, C., Dignum, F., Jonker, C. M., & Treur, J. (1999). Deliberative normative agents: Principles and architecture. In International Workshop on Agent Theories, Architectures, and Languages (pp. 364–378). New York: Springer.

  19. Coello Coello, C. (2006). Evolutionary multi-objective optimization: A historical view of the field. IEEE Computational Intelligence Magazine, 1(1), 28–36.

    MathSciNet  Article  Google Scholar 

  20. Critch, A. (2017). Toward negotiable reinforcement learning: Shifting priorities in Pareto optimal sequential decision-making. arXiv preprint arXiv:1701.01302.

  21. Cushman, F. (2013). Action, outcome, and value a dual-system framework for morality. Personality and Social Psychology Review, 17(3), 273–292.

    Article  Google Scholar 

  22. Danielson, P. (2009). Can robots have a conscience? Nature, 457(7229), 540–540.

    Article  Google Scholar 

  23. Das, I., & Dennis, J. E. (1997). A closer look at drawbacks of minimizing weighted sums of objectives for pareto set generation in multicriteria optimization problems. Structural Optimization, 14(1), 63–69.

    Article  Google Scholar 

  24. Dewey, D. (2011). Learning what to value. In International Conference on Artificial General Intelligence (pp. 309–314). New York: Springer.

  25. Dewey, D. (2014). Reinforcement learning and the reward engineering principle. In 2014 AAAI Spring Symposium Series.

  26. Dignum, F. (1996). Autonomous agents and social norms. In ICMAS-96 Workshop on Norms, Obligations and Conventions (pp. 56–71).

  27. Dubois, D., Fargier, H., & Prade, H. (1997). Beyond min aggregation in multicriteria decision: (Ordered) Weighted min, discri-min, leximin. In The ordered weighted averaging operators (pp. 181–192). New York: Springer.

  28. Eckhardt, D. E., Caglayan, A. K., Knight, J. C., Lee, L. D., McAllister, D. F., Vouk, M. A., et al. (1991). An experimental evaluation of software redundancy as a strategy for improving reliability. IEEE Transactions on Software Engineering, 17(7), 692–702.

    Article  Google Scholar 

  29. Etzioni, A., & Etzioni, O. (2016). Designing AI systems that obey our laws and values. Communications of the ACM, 59(9), 29–31.

    Article  Google Scholar 

  30. Ferrucci, D. A. (2012). Introduction to “This is Watson”. IBM Journal of Research and Development, 56(3.4), 1–1.

    Article  Google Scholar 

  31. Fieldsend, J. E. (2004). Multi-objective particle swarm optimisation methods. Technical Report No. 419. Department of Computer Science, University of Exeter.

  32. Fieser, J. (2016). Ethics. In The Internet encyclopedia of philosophy (ISSN 2161-0002, http://www.iep.utm.edu, 2016).

  33. Fishburn, P. C. (1968). Utility theory. Management Science, 14(5), 335–378.

    Article  MATH  Google Scholar 

  34. Future of Life Institute. (2015). Research priorities for robust and beneficial artificial intelligence: An open letter (https://futureoflife.org/ai-open-letter/, 2015).

  35. Goodall, N. (2014). Ethical decision making during automated vehicle crashes. Transportation Research Record: Journal of the Transportation Research Board, 2424, 58–65.

  36. Guarini, M. (2006). Particularism and the classification and reclassification of moral cases. IEEE Intelligent Systems, 21(4), 22–28.

    Article  Google Scholar 

  37. Kant, I. (1993). Grounding for the metaphysics of Morals (1797). Indianapolis: Hackett.

  38. Keeney, R. L. (1988). Value-driven expert systems for decision support. Decision Support Systems, 4(4), 405–412.

    MathSciNet  Article  Google Scholar 

  39. Leenes, R., & Lucivero, F. (2014). Laws on robots, laws by robots, laws in robots: Regulating robot behaviour by design. Law, Innovation and Technology, 6(2), 193–220.

    Article  Google Scholar 

  40. Lenat, D. B. (1983). Eurisko: A program that learns new heuristics and domain concepts: The nature of heuristics III: Program design and results. Artificial Intelligence, 21(1–2), 61–98.

    Article  Google Scholar 

  41. Littman, M. L. (2015). Reinforcement learning improves behaviour from evaluative feedback. Nature, 521(7553), 445–451.

    Article  Google Scholar 

  42. Livingston, S., Garvey, J., & Elhanany, I. (2008). On the broad implications of reinforcement learning based Agi. In Artificial General Intelligence, 2008: Proceedings of the First AGI Conference (p. 478, vol. 171). Amsterdam: IOS Press.

  43. Lozano-Perez, T., Cox, I. J., & Wilfong, G. T. (2012). Autonomous robot vehicles. New York: Springer.

    Google Scholar 

  44. Meisner, E. M. (2009). Learning controllers for human–robot Interaction (PhD thesis, Rensselaer Polytechnic Institute, 2009).

  45. Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 2053951716679679.

    Article  Google Scholar 

  46. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.

    Article  Google Scholar 

  47. Murphy VII, T. (2013). The first level of Super Mario Bros. Is easy with lexicographic orderings and time travel. The Association for Computational Heresy (SIGBOVIK).

  48. Omohundro, S. M. (2008). The basic AI drives, In AGI (vol. 171, pp. 483–492).

  49. Petraeus, D. H., & Amos, J. F. (2006). Fm 3-24: Counterinsurgency. Department of the Army.

  50. Prakken, H. (2016). On how AI & law can help autonomous systems obey the law: A position paper. AI4J–Artificial Intelligence for Justice, 42, 42–46.

    Google Scholar 

  51. Rawls, J. (1971). A theory of justice. Cambridge: Harvard University Press.

    Google Scholar 

  52. Refanidis, I., & Vlahavas, I. (2003). Multiobjective heuristic state-space planning. Artificial Intelligence, 145(1–2), 1–32.

    MathSciNet  Article  MATH  Google Scholar 

  53. Reynolds, G. (2011). Ethics in information technology. Boston: Cengage learning.

    Google Scholar 

  54. Riedl, M. O., & Harrison, B. (2016). Using stories to teach human values to artificial agents. In Proceedings of the 2nd International Workshop on AI. Phoenix, AZ: Ethics and Society.

  55. Roijers, D. M., Vamplew, P., Whiteson, S., & Dazeley, R. (2013). A survey of multi-objective sequential decision-making. Journal of Artificial Intelligence Research, 48, 67–113.

    MathSciNet  MATH  Google Scholar 

  56. Romei, A., & Ruggieri, S. (2014). A multidisciplinary survey on discrimination analysis. The Knowledge Engineering Review, 29(5), 582–638.

    Article  Google Scholar 

  57. Ross, W. D. (1930). The right and the good. Oxford: Clarendon Press.

    Google Scholar 

  58. Russell, S. J., & Norvig, P. (2010). Artificial intelligence: A modern approach (3rd ed.). Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  59. Sharkey, N. (2009). Death strikes from the sky: The calculus of proportionality. IEEE Technology and Society Magazine, 28(1), 16–19.

    Article  Google Scholar 

  60. Sharkey, N. (2012). Killing made easy: From joysticks to politics. In P. Lin, K. Abney, & G. A. Bekey (Eds.), Robot ethics: The ethical and social implications of robotics (pp. 111–128). Cambridge: MIT Press.

    Google Scholar 

  61. Sharkey, N., & Sharkey, A. (2012). The rights and wrongs of robot care. In P. Lin, K. Abney, & G. A. Bekey (Eds.), Robot ethics: The ethical and social implications of robotics (pp. 267–282). Cambridge: MIT Press.

    Google Scholar 

  62. Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484–489.

    Article  Google Scholar 

  63. Soares, N., & Fallenstein, B. (2014). Aligning superintelligence with human interests: A technical research agenda. Machine Intelligence Research Institute (MIRI) technical report 8.

  64. Soares, N., Fallenstein, B., Armstrong, S., & Yudkowsky, E. (2015). Corrigibility. In Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence.

  65. Soh, H., & Demiris, Y. (2011). Evolving policies for multi-reward partially observable markov decision processes (mr-pomdps). In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (pp. 713– 720). ACM.

  66. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: MIT Press.

    Google Scholar 

  67. Tavani, H. T. (2011). Ethics and technology: Controversies, questions, and strategies for ethical computing. Hoboken: Wiley.

    Google Scholar 

  68. Taylor, J. (2016). Quantilizers: A safer alternative to maximizers for limited optimization. In AAAI AI, Ethics & Society Workshop.

  69. Taylor, J., Yudkowsky, E., LaVictoire, P., & Critch, A. (2016). Alignment for advanced machine learning systems. Technical report, Technical Report 20161, MIRI.

  70. The IEEE Global Initiative for Ethical Considerations in Artificial Intelligence and Autonomous Systems. (2016). Ethically aligned design: A vision for prioritizing wellbeing with artificial intelligence and autonomous systems.

  71. Vamplew, P., Yearwood, J., Dazeley, R., & Berry, A. (2008). On the limitations of scalarisation for multi-objective reinforcement learning of Pareto Fronts. In AI’08: The 21st Australasian Joint Conference on Artificial Intelligence (pp. 372–378).

  72. Vamplew, P. (2004). Lego mindstorms robots as a platform for teaching reinforcement learning. In Proceedings of AISAT2004: International Conference on Artificial Intelligence in Science and Technology.

  73. Van Moffaert, K., Brys, T., Chandra, A., Esterle, L., Lewis, P. R., & Nowé, A. (2014). A novel adaptive weight selection algorithm for multi-objective multi-agent reinforcement learning, In 2014 International Joint Conference on Neural Networks (IJCNN) (pp. 2306–2314).

  74. Van Riemsdijk, M. B., Jonker, C. M., & Lesser, V. (2015). Creating socially adaptive electronic partners: Interaction, reasoning and ethical challenges. In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems (pp. 1201–1206).

  75. van Wynsberghe, A. (2016). Service robots, care ethics, and design. Ethics and Information Technology, 18, 311–321.

  76. Wallach, W., & Allen, C. (2008). Moral machines: Teaching robots right from wrong. Oxford: Oxford University Press.

    Google Scholar 

  77. Wellman, M. P. (1985). Reasoning about preference models. Technical Report 340. Cambridge, MA: MIT Laboratory for Computer Science.

    Google Scholar 

  78. Yampolskiy, R. V., & Spellchecker, M. (2016). Artificial intelligence safety and cybersecurity: A timeline of AI failures. arXiv preprint arXiv:1610.07997.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Vamplew.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vamplew, P., Dazeley, R., Foale, C. et al. Human-aligned artificial intelligence is a multiobjective problem. Ethics Inf Technol 20, 27–40 (2018). https://doi.org/10.1007/s10676-017-9440-6

Download citation

Keywords

  • Ethics
  • Aligned artificial intelligence
  • Value alignment
  • Maximum Expected Utility
  • Reward engineering