Skip to main content

Self-Reference, Self-Representation, and the Logic of Intentionality


Representationalist accounts of mental content face the threat of the homunculus fallacy. In collapsing the distinction between the conscious state and the conscious subject, self-representational accounts of consciousness possess the means to deal with this objection. We analyze a particular sort of self-representational theory, built on the work of John von Neumann on self-reproduction, using tools from mathematical logic. We provide an explicit theory of the emergence of referential beliefs by means of modal fixed points, grounded in intrinsic properties yielding the subjective aspects of experience. Furthermore, we study complications introduced by allowing for the modification of such symbolic content by environmental influences.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. I thank an anonymous referee for drawing my attention to this point.


  • Alter, T., & Nagasawa, Y. (2015). Consciousness in the physical world: Perspectives on Russellian monism. Oxford University Press.

  • Barasz, M., Christiano, P., Fallenstein, B., Herreshoff, M., LaVictoire, P., & Yudkowsky, E. (2014). Robust cooperation in the Prisoner’s Dilemma: Program equilibrium via provability logic. arXiv:1401.5577

  • Boolos, G. (1995). The logic of provability. Cambridge: Cambridge University Press.

    Google Scholar 

  • Chalmers, D. J. (1996). The conscious mind: In search of a fundamental theory. Oxford University Press.

  • Chalmers, D. J. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2(3), 200–219.

    Google Scholar 

  • Chang, O., & Lipson, H. (2018) Neural network quine. In:Artificial life conference proceedings (pp. 234–241). MIT Press.

  • Copeland, B. J. (1996). What is computation? Synthese, 108(3), 335–359.

    Article  Google Scholar 

  • Dennett, D. C. (1988). Quining qualia. In: Consciousness in modern science. Oxford University Press.

  • Edelman, G. M., & Gally, J. A. (2013). Reentry: A key mechanism for integration of brain function. Frontiers in Integrative Neuroscience, 7, 63.

    Article  Google Scholar 

  • Gödel, K. (1995). Some basic theorems on the foundations of mathematics and their implications (Gibbs Lecture, 1951). In: W. Goldfarb, C. Parsons, S. Feferman, J. W. Dawson Jr., & R. N. Solovay (Eds.), Collected works (Vol. III, pp. 304–323). New York: Unpublished Essays and Lectures, Oxford University Press.

  • Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38(1), 173–198.

    Article  Google Scholar 

  • Godfrey-Smith, P. (2009). Triviality arguments against functionalism. Philosophical Studies, 145(2), 273–295.

    Article  Google Scholar 

  • Hofstadter, D. R. (2007). I am a strange loop. Basic books.

  • Hofstadter, D. R. (1979). Gödel, Escher, Bach: An eternal golden braid. Hassocks, Sussex: Harvester Press.

    Google Scholar 

  • Horsman, D. C. (2015). Abstraction/representation theory for heterotic physical computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2046), 20140224.

    Article  Google Scholar 

  • Horsman, C., Stepney, S., Wagner, R. C., & Kendon, V. (2014). When does a physical system compute? Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2169), 20140182.

    Article  Google Scholar 

  • Kriegel, U., & Williford, K. (eds) (2006) Self-representational approaches to consciousness. MIT Press.

  • Kriegel, U. (2003). The new mysterianism and the thesis of cognitive closure. Acta Analytica, 18(30–31), 177–191.

    Article  Google Scholar 

  • Laing, R. (1977). Automaton models of reproduction by self-inspection. Journal of Theoretical Biology, 66(3), 437–456.

    Article  Google Scholar 

  • LaVictoire, P. (2015). An introduction to Löb’s theorem in MIRI research. In: Technical reports. Machine Intelligence Research Institute, Berkeley, CA.

  • LaVictoire, P., Fallenstein, B., Yudkowsky, E., Barasz, M., Christiano, P., & Herreshoff, M. (2014). Program equilibrium in the Prisoner’s Dilemma via Löb’s theorem. In:Workshops at the twenty-eighth AAAI conference on artificial intelligence.

  • Löb, M. H. (1955). Solution of a problem of Leon Henkin 1. The Journal of Symbolic Logic, 20(2), 115–118.

    Article  Google Scholar 

  • Locke, J. (1690). An essay concerning humane understanding. T. Basset, E. Mory, London.

  • Lucas, J. R. (1961). Minds, machines and Gödel. Philosophy, 36(137), 112–127.

    Article  Google Scholar 

  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.

    Article  Google Scholar 

  • McGinn, C. (1989). Can we solve the mind-body problem? Mind, 98(391), 349–366.

    Article  Google Scholar 

  • Mumford, D. (1991). On the computational architecture of the Neocortex I: the role of the Thalamo–Cortical loop. Biological Cybernetics, 65(2), 135–145.

    Article  Google Scholar 

  • Mumford, D. (1992). On the computational architecture of the Neocortex II: The role of Cortico–Cortical loops. Biological Cybernetics, 66(3), 241–251.

    Article  Google Scholar 

  • Newman, M. H. (1928). Mr. Russell’s “causal theory of perception". Mind 37(146), 137–148.

  • Pattee, H. H., & Rączaszek-Leonardi, J. (2012). Laws, language and life: Howard Pattee’s classic papers on the physics of symbols with contemporary commentary commentary (vol. 7). Springer Science & Business Media.

  • Pattee, H. H. (1969). How does a Molecule become a message? Communication in Development, 3, 1–16.

    Google Scholar 

  • Pattee, H. H. (2008). The necessity of biosemiotics: Matter-symbol complementarity. In M. Barbieri (Ed.), Introduction to biosemiotics (pp. 115–132). Berlin: Springer.

    Google Scholar 

  • Penrose, R. (1989). The emperor’s new mind: Concerning computers, minds, and the laws of physics. Oxford University Press.

  • Picciuto, V. (2013). Consciousness and mental quotation: An intrinsic higher-order approach. Ph.D. thesis.

  • Putnam, H. (1988). Representation and reality. Cambridge, MA: MIT Press.

    Google Scholar 

  • Quine, W. V. O. (1976). The ways of paradox, and other essays. Harvard: Harvard University Press.

    Google Scholar 

  • Rosenthal, D. (2005). Consciousness and mind. Oxford: Clarendon Press.

    Google Scholar 

  • Russell, B. (1927). The analysis of matter. London: Routledge.

    Google Scholar 

  • Schmidhuber, J. (1993a). A ‘self-referential’ weight matrix. In: International conference on artificial neural networks (pp. 446–450). Springer.

  • Schmidhuber, J. (1993b). An ‘introspective’ network that can learn to run its own weight change algorithm. In: 1993 third international conference on artificial neural networks (pp 191–194). IET.

  • Seager, W. (2006). The ‘intrinsic nature’ argument for Panpsychism. Journal of Consciousness Studies, 13(10–11), 129–145.

  • Seager, W. (1995). Consciousness, information and Panpsychism. Journal of Consciousness Studies, 2(3), 272–288.

    Google Scholar 

  • Seager, W. (2016). Theories of consciousness: An introduction (2nd ed.). Milton Park: Routledge.

    Book  Google Scholar 

  • Searle, J. R. (1992). The rediscovery of the mind. Cambridge: MIT Press.

    Book  Google Scholar 

  • Shoemaker, S. (1982). The inverted spectrum. The Journal of Philosophy, 79(7), 357–381.

    Article  Google Scholar 

  • Strawson, G. (2019). What does “physical” mean? A prolegomenon to physicalist Panpsychism. In: W. Seager (Ed.), The Routledge handbook of Panpsychism. Abingdon: Routledge.

  • Szangolies, J. (2018). Von Neumann minds: A toy model of meaning in a natural world. In: A. Aguirre A, B. Foster, Z. Merali (Eds.), Wandering towards a goal (pp. 29–39). Springer.

  • Szangolies, J. (2020). The abstraction/representation account of computation and subjective experience. Minds and Machines, pp. 1–41.

  • Szangolies, J. (2015). Von Neumann minds: Intentional automata. Mind Matter, 13(2), 169–191.

    Google Scholar 

  • Turing, A. M. (1937). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 2(1), 230–265.

    Article  Google Scholar 

  • von Neumann, J. (1966). The theory of automata: Construction, reproduction, homogeneity, original unpublished manuscript, 1952–1953. In: Burke AW (ed.), Theory of self-reproducing automata (pp. 91–381). University of Illinois Press, Urbana, IL.

  • Waters, D. P. (2012). Von Neumann’s theory of self-reproducing automata: A useful Framework for Biosemiotics? Biosemiotics, 5(1), 5–15.

  • Whyte, J. T. (1990). Success semantics. Analysis, 50(3), 149–157.

    Article  Google Scholar 

  • Williford, K. (2006). The self-representational structure of consciousness. In U. Kriegel & K. Williford (Eds.), Self-representational approaches to consciousness (pp. 111–142). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Yudkowsky, E., & Herreshoff, M. (2013). Tiling agents for self-modifying AI, and the Löbian obstacle. Early draft. Technical report. Machine Intelligence Research Institute, Berkeley, CA,

Download references

Author information

Authors and Affiliations


Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: A Self-Inspecting Quine

Appendix A: A Self-Inspecting Quine

figure e

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Szangolies, J. Self-Reference, Self-Representation, and the Logic of Intentionality. Erkenn (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: