Advertisement

Erkenntnis

, Volume 81, Issue 5, pp 993–1010 | Cite as

Unified Grounding

  • Casper Storm Hansen
Original Article

Abstract

This paper offers a unification and systematization of the grounding approaches to truth, denotation, classes and abstraction. Its main innovation is a method for “kleenifying” bivalent semantics so as to ensure that the trivalent semantics used for various linguistic elements are perfectly analogous to the semantics used by Kripke, rather than relying on intuition to achieve similarity. The focus is on generalizing strong Kleene semantics, but one section is devoted to supervaluation, and the unification method also extends to weak Kleene semantics.

Keywords

Definite Description Truth Predicate Class Term Linguistic Resource Closed Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I am grateful to Øystein Linnebo, Toby Meadows and two anonymous reviewers for extensive and valuable feedback. This research is supported by the Analysis Trust.

References

  1. Bernays, P., & Hilbert, D. (1939). Grundlagen der Mathematik (zweiter Band). Berlin: Springer.Google Scholar
  2. Gupta, A. (1982). Truth and paradox. Journal of Philosophical Logic, 11, 1–60.CrossRefGoogle Scholar
  3. Hansen, C. S. (2012). A Kripkean solution to paradoxes of denotation. In D. Lassiter & M. Slavkovik (Eds.), New directions in logic, language, and computation. Berlin: Springer.Google Scholar
  4. Horsten, L., & Linnebo, Ø. (2015). Term models for abstraction principes. Journal of Philosophical Logic. doi: 10.1007/s10992-015-9344-z.
  5. Kleene, S. C. (1952). Introduction to metamathematics. Amsterdam: North-Holland Publishing Company.Google Scholar
  6. König, J. (1905). Über die Grundlagen der Mengenlehre und das Kontinuumproblem. Mathematische Annalen 61, 156–160. Translated as “On the foundations of set theory and the continuum problem” in van Heijenoort 1967.Google Scholar
  7. Kremer, M. (1990). Paradox and reference. In J. M. Dunn & A. Gupta (Eds.), Truth and consequences. Berlin: Kluwer Academic Publishers.Google Scholar
  8. Kripke, S. (1975). Outline of a theory of truth. The Journal of Philosophy, 72, 690–716.CrossRefGoogle Scholar
  9. Kroon, F. (1991). Denotation and description in free logic. Theoria, 57, 17–41.CrossRefGoogle Scholar
  10. Maddy, P. (1983). Proper classes. Journal of Symbolic Logic, 48, 113–139.CrossRefGoogle Scholar
  11. Maddy, P. (2000). A theory of sets and classes. In Between logic and intuition: Essays in honor of Charles Parsons. Cambridge: Cambridge University Press.Google Scholar
  12. Priest, G. (2006). Doubt truth to be a liar. Oxford: Oxford University Press.Google Scholar
  13. Richard, J. (1905). Les principes des mathématiques et le problème des ensembles. Revue Générale des Sciences Pures et Appliquées16, 541. Translated as “The principles of mathematics and the problem of sets” in van Heijenoort 1967.Google Scholar
  14. Russell, B. (1908). Mathematical logic as based on the theory of types. American Journal of Mathematics, 30, 222–262. (reprinted in van Heijenoort 1967).CrossRefGoogle Scholar
  15. Simmons, K. (2005). A Berry and a Russell without self-reference. Philosophical Studies, 126, 253–261.CrossRefGoogle Scholar
  16. Uzquiano, G. (2004). An infinitary paradox of denotation. Analysis, 64, 128–131.CrossRefGoogle Scholar
  17. van Heijenoort, J. (1967). From Frege to Gödel: A source book in mathematical logic, 1879–1931. Cambridge: Harvard University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institut d’Histoire et de Philosophie des Sciences et des TechniquesUniversité Paris 1 Panthéon Sorbonne/École Normale Supérieure/Centre National de la Recherche ScientifiqueParisFrance

Personalised recommendations